Subversion Repositories DIN Is Noise

Rev

Rev 2054 | Blame | Compare with Previous | Last modification | View Log | RSS feed

#include <iostream>
#include <fstream>
/*
* Copyright (c) 2013-14 Mikko Mononen memon@inside.org
*
* This software is provided 'as-is', without any express or implied
* warranty.  In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
* The SVG parser is based on Anti-Grain Geometry 2.4 SVG example
* Copyright (C) 2002-2004 Maxim Shemanarev (McSeem) (http://www.antigrain.com/)
*
* Arc calculation code based on canvg (https://code.google.com/p/canvg/)
*
* Bounding box calculation based on http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
*
*/


#ifndef NANOSVG_H

#define NANOSVG_H

// NanoSVG is a simple stupid single-header-file SVG parse. The output of the parser is a list of cubic bezier shapes.
//
// The library suits well for anything from rendering scalable icons in your editor application to prototyping a game.
//
// NanoSVG supports a wide range of SVG features, but something may be missing, feel free to create a pull request!
//
// The shapes in the SVG images are transformed by the viewBox and converted to specified units.
// That is, you should get the same looking data as your designed in your favorite app.
//
// NanoSVG can return the paths in few different units. For example if you want to render an image, you may choose
// to get the paths in pixels, or if you are feeding the data into a CNC-cutter, you may want to use millimeters.
//
// The units passed to NanoSVG should be one of: 'px', 'pt', 'pc' 'mm', 'cm', or 'in'.
// DPI (dots-per-inch) controls how the unit conversion is done.
//
// If you don't know or care about the units stuff, "px" and 96 should get you going.


/* Example Usage:
 // Load SVG
 NSVGimage* image;
 image = nsvgParseFromFile("test.svg", "px", 96);
 printf("size: %f x %f\n", image->width, image->height);
 // Use...
 for (NSVGshape *shape = image->shapes; shape != NULL; shape = shape->next) {
   for (NSVGpath *path = shape->paths; path != NULL; path = path->next) {
     for (int i = 0; i < path->npts-1; i += 3) {
       float* p = &path->pts[i*2];
       drawCubicBez(p[0],p[1], p[2],p[3], p[4],p[5], p[6],p[7]);
     }
   }
 }
 // Delete
 nsvgDelete(image);
*/


enum NSVGpaintType {
 NSVG_PAINT_UNDEF = -1,
 NSVG_PAINT_NONE = 0,
 NSVG_PAINT_COLOR = 1,
 NSVG_PAINT_LINEAR_GRADIENT = 2,
 NSVG_PAINT_RADIAL_GRADIENT = 3
};

enum NSVGspreadType {
 NSVG_SPREAD_PAD = 0,
 NSVG_SPREAD_REFLECT = 1,
 NSVG_SPREAD_REPEAT = 2
};

enum NSVGlineJoin {
 NSVG_JOIN_MITER = 0,
 NSVG_JOIN_ROUND = 1,
 NSVG_JOIN_BEVEL = 2
};

enum NSVGlineCap {
 NSVG_CAP_BUTT = 0,
 NSVG_CAP_ROUND = 1,
 NSVG_CAP_SQUARE = 2
};

enum NSVGfillRule {
 NSVG_FILLRULE_NONZERO = 0,
 NSVG_FILLRULE_EVENODD = 1
};

enum NSVGflags {
 NSVG_FLAGS_VISIBLE = 0x01
};

typedef struct NSVGgradientStop {
 unsigned int color;
 float offset;
} NSVGgradientStop;

typedef struct NSVGgradient {
 float xform[6];
 char spread;
 float fx, fy;
 int nstops;
 NSVGgradientStop stops[1];
} NSVGgradient;

typedef struct NSVGpaint {
 signed char type;
 union {
   unsigned int color;
   NSVGgradient* gradient;
 };
} NSVGpaint;

typedef struct NSVGpath
{
 float* pts;          // Cubic bezier points: x0,y0, [cpx1,cpx1,cpx2,cpy2,x1,y1], ...
 int npts;          // Total number of bezier points.
 char closed;       // Flag indicating if shapes should be treated as closed.
 float bounds[4];     // Tight bounding box of the shape [minx,miny,maxx,maxy].
 struct NSVGpath* next;   // Pointer to next path, or NULL if last element.
} NSVGpath;

typedef struct NSVGshape
{
 char id[64];       // Optional 'id' attr of the shape or its group
 NSVGpaint fill;        // Fill paint
 NSVGpaint stroke;      // Stroke paint
 float opacity;       // Opacity of the shape.
 float strokeWidth;     // Stroke width (scaled).
 float strokeDashOffset;    // Stroke dash offset (scaled).
 float strokeDashArray[8];  // Stroke dash array (scaled).
 char strokeDashCount;    // Number of dash values in dash array.
 char strokeLineJoin;   // Stroke join type.
 char strokeLineCap;      // Stroke cap type.
 float miterLimit;      // Miter limit
 char fillRule;       // Fill rule, see NSVGfillRule.
 unsigned char flags;   // Logical or of NSVG_FLAGS_* flags
 float bounds[4];     // Tight bounding box of the shape [minx,miny,maxx,maxy].
 char fillGradient[64];   // Optional 'id' of fill gradient
 char strokeGradient[64]; // Optional 'id' of stroke gradient
 float xform[6];        // Root transformation for fill/stroke gradient
 NSVGpath* paths;     // Linked list of paths in the image.
 struct NSVGshape* next;    // Pointer to next shape, or NULL if last element.
} NSVGshape;

typedef struct NSVGimage
{
 float width;       // Width of the image.
 float height;        // Height of the image.
 NSVGshape* shapes;     // Linked list of shapes in the image.
} NSVGimage;

// Parses SVG file from a file, returns SVG image as paths.
NSVGimage* nsvgParseFromFile(const char* filename, const char* units, float dpi);

// Parses SVG file from a null terminated string, returns SVG image as paths.
// Important note: changes the string.
NSVGimage* nsvgParse(char* input, const char* units, float dpi);

// Duplicates a path.
NSVGpath* nsvgDuplicatePath(NSVGpath* p);

// Deletes an image.
void nsvgDelete(NSVGimage* image);

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define NSVG_PI (3.14159265358979323846264338327f)
#define NSVG_KAPPA90 (0.5522847493f)  // Length proportional to radius of a cubic bezier handle for 90deg arcs.

#define NSVG_ALIGN_MIN 0
#define NSVG_ALIGN_MID 1
#define NSVG_ALIGN_MAX 2
#define NSVG_ALIGN_NONE 0
#define NSVG_ALIGN_MEET 1
#define NSVG_ALIGN_SLICE 2

#define NSVG_NOTUSED(v) do { (void)(1 ? (void)0 : ( (void)(v) ) ); } while(0)
#define NSVG_RGB(r, g, b) (((unsigned int)r) | ((unsigned int)g << 8) | ((unsigned int)b << 16))

#ifdef _MSC_VER
 #pragma warning (disable: 4996) // Switch off security warnings
 #pragma warning (disable: 4100) // Switch off unreferenced formal parameter warnings
 #ifdef __cplusplus
 #define NSVG_INLINE inline
 #else
 #define NSVG_INLINE
 #endif
#else
 #define NSVG_INLINE inline
#endif


static int nsvg__isspace(char c)
{
 return strchr(" \t\n\v\f\r", c) != 0;
}

static int nsvg__isdigit(char c)
{
 return c >= '0' && c <= '9';
}

static NSVG_INLINE float nsvg__minf(float a, float b) { return a < b ? a : b; }
static NSVG_INLINE float nsvg__maxf(float a, float b) { return a > b ? a : b; }


// Simple XML parser

#define NSVG_XML_TAG 1
#define NSVG_XML_CONTENT 2
#define NSVG_XML_MAX_ATTRIBS 256

static void nsvg__parseContent(char* s,
                void (*contentCb)(void* ud, const char* s),
                void* ud)
{
 // Trim start white spaces
 while (*s && nsvg__isspace(*s)) s++;
 if (!*s) return;

 if (contentCb)
   (*contentCb)(ud, s);
}

static void nsvg__parseElement(char* s,
                void (*startelCb)(void* ud, const char* el, const char** attr),
                void (*endelCb)(void* ud, const char* el),
                void* ud)
{
 const char* attr[NSVG_XML_MAX_ATTRIBS];
 int nattr = 0;
 char* name;
 int start = 0;
 int end = 0;
 char quote;

 // Skip white space after the '<'
 while (*s && nsvg__isspace(*s)) s++;

 // Check if the tag is end tag
 if (*s == '/') {
   s++;
   end = 1;
 } else {
   start = 1;
 }

 // Skip comments, data and preprocessor stuff.
 if (!*s || *s == '?' || *s == '!')
   return;

 // Get tag name
 name = s;
 while (*s && !nsvg__isspace(*s)) s++;
 if (*s) { *s++ = '\0'; }

 // Get attribs
 while (!end && *s && nattr < NSVG_XML_MAX_ATTRIBS-3) {
   char* name = NULL;
   char* value = NULL;

   // Skip white space before the attrib name
   while (*s && nsvg__isspace(*s)) s++;
   if (!*s) break;
   if (*s == '/') {
     end = 1;
     break;
   }
   name = s;
   // Find end of the attrib name.
   while (*s && !nsvg__isspace(*s) && *s != '=') s++;
   if (*s) { *s++ = '\0'; }
   // Skip until the beginning of the value.
   while (*s && *s != '\"' && *s != '\'') s++;
   if (!*s) break;
   quote = *s;
   s++;
   // Store value and find the end of it.
   value = s;
   while (*s && *s != quote) s++;
   if (*s) { *s++ = '\0'; }

   // Store only well formed attributes
   if (name && value) {
     attr[nattr++] = name;
     attr[nattr++] = value;
   }
 }

 // List terminator
 attr[nattr++] = 0;
 attr[nattr++] = 0;

 // Call callbacks.
 if (start && startelCb)
   (*startelCb)(ud, name, attr);
 if (end && endelCb)
   (*endelCb)(ud, name);
}

int nsvg__parseXML(char* input,
          void (*startelCb)(void* ud, const char* el, const char** attr),
          void (*endelCb)(void* ud, const char* el),
          void (*contentCb)(void* ud, const char* s),
          void* ud)
{
 char* s = input;
 char* mark = s;
 int state = NSVG_XML_CONTENT;
 while (*s) {
   if (*s == '<' && state == NSVG_XML_CONTENT) {
     // Start of a tag
     *s++ = '\0';
     nsvg__parseContent(mark, contentCb, ud);
     mark = s;
     state = NSVG_XML_TAG;
   } else if (*s == '>' && state == NSVG_XML_TAG) {
     // Start of a content or new tag.
     *s++ = '\0';
     nsvg__parseElement(mark, startelCb, endelCb, ud);
     mark = s;
     state = NSVG_XML_CONTENT;
   } else {
     s++;
   }
 }

 return 1;
}


/* Simple SVG parser. */

#define NSVG_MAX_ATTR 128

enum NSVGgradientUnits {
 NSVG_USER_SPACE = 0,
 NSVG_OBJECT_SPACE = 1
};

#define NSVG_MAX_DASHES 8

enum NSVGunits {
 NSVG_UNITS_USER,
 NSVG_UNITS_PX,
 NSVG_UNITS_PT,
 NSVG_UNITS_PC,
 NSVG_UNITS_MM,
 NSVG_UNITS_CM,
 NSVG_UNITS_IN,
 NSVG_UNITS_PERCENT,
 NSVG_UNITS_EM,
 NSVG_UNITS_EX
};

typedef struct NSVGcoordinate {
 float value;
 int units;
} NSVGcoordinate;

typedef struct NSVGlinearData {
 NSVGcoordinate x1, y1, x2, y2;
} NSVGlinearData;

typedef struct NSVGradialData {
 NSVGcoordinate cx, cy, r, fx, fy;
} NSVGradialData;

typedef struct NSVGgradientData
{
 char id[64];
 char ref[64];
 signed char type;
 union {
   NSVGlinearData linear;
   NSVGradialData radial;
 };
 char spread;
 char units;
 float xform[6];
 int nstops;
 NSVGgradientStop* stops;
 struct NSVGgradientData* next;
} NSVGgradientData;

typedef struct NSVGattrib
{
 char id[64];
 float xform[6];
 unsigned int fillColor;
 unsigned int strokeColor;
 float opacity;
 float fillOpacity;
 float strokeOpacity;
 char fillGradient[64];
 char strokeGradient[64];
 float strokeWidth;
 float strokeDashOffset;
 float strokeDashArray[NSVG_MAX_DASHES];
 int strokeDashCount;
 char strokeLineJoin;
 char strokeLineCap;
 float miterLimit;
 char fillRule;
 float fontSize;
 unsigned int stopColor;
 float stopOpacity;
 float stopOffset;
 char hasFill;
 char hasStroke;
 char visible;
} NSVGattrib;

typedef struct NSVGparser
{
 NSVGattrib attr[NSVG_MAX_ATTR];
 int attrHead;
 float* pts;
 int npts;
 int cpts;
 NSVGpath* plist;
 NSVGimage* image;
 NSVGgradientData* gradients;
 NSVGshape* shapesTail;
 float viewMinx, viewMiny, viewWidth, viewHeight;
 int alignX, alignY, alignType;
 float dpi;
 char pathFlag;
 char defsFlag;
} NSVGparser;

static void nsvg__xformIdentity(float* t)
{
 t[0] = 1.0f; t[1] = 0.0f;
 t[2] = 0.0f; t[3] = 1.0f;
 t[4] = 0.0f; t[5] = 0.0f;
}

static void nsvg__xformSetTranslation(float* t, float tx, float ty)
{
 t[0] = 1.0f; t[1] = 0.0f;
 t[2] = 0.0f; t[3] = 1.0f;
 t[4] = tx; t[5] = ty;
}

static void nsvg__xformSetScale(float* t, float sx, float sy)
{
 t[0] = sx; t[1] = 0.0f;
 t[2] = 0.0f; t[3] = sy;
 t[4] = 0.0f; t[5] = 0.0f;
}

static void nsvg__xformSetSkewX(float* t, float a)
{
 t[0] = 1.0f; t[1] = 0.0f;
 t[2] = tanf(a); t[3] = 1.0f;
 t[4] = 0.0f; t[5] = 0.0f;
}

static void nsvg__xformSetSkewY(float* t, float a)
{
 t[0] = 1.0f; t[1] = tanf(a);
 t[2] = 0.0f; t[3] = 1.0f;
 t[4] = 0.0f; t[5] = 0.0f;
}

static void nsvg__xformSetRotation(float* t, float a)
{
 float cs = cosf(a), sn = sinf(a);
 t[0] = cs; t[1] = sn;
 t[2] = -sn; t[3] = cs;
 t[4] = 0.0f; t[5] = 0.0f;
}

static void nsvg__xformMultiply(float* t, float* s)
{
 float t0 = t[0] * s[0] + t[1] * s[2];
 float t2 = t[2] * s[0] + t[3] * s[2];
 float t4 = t[4] * s[0] + t[5] * s[2] + s[4];
 t[1] = t[0] * s[1] + t[1] * s[3];
 t[3] = t[2] * s[1] + t[3] * s[3];
 t[5] = t[4] * s[1] + t[5] * s[3] + s[5];
 t[0] = t0;
 t[2] = t2;
 t[4] = t4;
}

static void nsvg__xformInverse(float* inv, float* t)
{
 double invdet, det = (double)t[0] * t[3] - (double)t[2] * t[1];
 if (det > -1e-6 && det < 1e-6) {
   nsvg__xformIdentity(t);
   return;
 }
 invdet = 1.0 / det;
 inv[0] = (float)(t[3] * invdet);
 inv[2] = (float)(-t[2] * invdet);
 inv[4] = (float)(((double)t[2] * t[5] - (double)t[3] * t[4]) * invdet);
 inv[1] = (float)(-t[1] * invdet);
 inv[3] = (float)(t[0] * invdet);
 inv[5] = (float)(((double)t[1] * t[4] - (double)t[0] * t[5]) * invdet);
}

static void nsvg__xformPremultiply(float* t, float* s)
{
 float s2[6];
 memcpy(s2, s, sizeof(float)*6);
 nsvg__xformMultiply(s2, t);
 memcpy(t, s2, sizeof(float)*6);
}

static void nsvg__xformPoint(float* dx, float* dy, float x, float y, float* t)
{
 *dx = x*t[0] + y*t[2] + t[4];
 *dy = x*t[1] + y*t[3] + t[5];
}

static void nsvg__xformVec(float* dx, float* dy, float x, float y, float* t)
{
 *dx = x*t[0] + y*t[2];
 *dy = x*t[1] + y*t[3];
}

#define NSVG_EPSILON (1e-12)

static int nsvg__ptInBounds(float* pt, float* bounds)
{
 return pt[0] >= bounds[0] && pt[0] <= bounds[2] && pt[1] >= bounds[1] && pt[1] <= bounds[3];
}


static double nsvg__evalBezier(double t, double p0, double p1, double p2, double p3)
{
 double it = 1.0-t;
 return it*it*it*p0 + 3.0*it*it*t*p1 + 3.0*it*t*t*p2 + t*t*t*p3;
}

static void nsvg__curveBounds(float* bounds, float* curve)
{
 int i, j, count;
 double roots[2], a, b, c, b2ac, t, v;
 float* v0 = &curve[0];
 float* v1 = &curve[2];
 float* v2 = &curve[4];
 float* v3 = &curve[6];

 // Start the bounding box by end points
 bounds[0] = nsvg__minf(v0[0], v3[0]);
 bounds[1] = nsvg__minf(v0[1], v3[1]);
 bounds[2] = nsvg__maxf(v0[0], v3[0]);
 bounds[3] = nsvg__maxf(v0[1], v3[1]);

 // Bezier curve fits inside the convex hull of it's control points.
 // If control points are inside the bounds, we're done.
 if (nsvg__ptInBounds(v1, bounds) && nsvg__ptInBounds(v2, bounds))
   return;

 // Add bezier curve inflection points in X and Y.
 for (i = 0; i < 2; i++) {
   a = -3.0 * v0[i] + 9.0 * v1[i] - 9.0 * v2[i] + 3.0 * v3[i];
   b = 6.0 * v0[i] - 12.0 * v1[i] + 6.0 * v2[i];
   c = 3.0 * v1[i] - 3.0 * v0[i];
   count = 0;
   if (fabs(a) < NSVG_EPSILON) {
     if (fabs(b) > NSVG_EPSILON) {
       t = -c / b;
       if (t > NSVG_EPSILON && t < 1.0-NSVG_EPSILON)
         roots[count++] = t;
     }
   } else {
     b2ac = b*b - 4.0*c*a;
     if (b2ac > NSVG_EPSILON) {
       t = (-b + sqrt(b2ac)) / (2.0 * a);
       if (t > NSVG_EPSILON && t < 1.0-NSVG_EPSILON)
         roots[count++] = t;
       t = (-b - sqrt(b2ac)) / (2.0 * a);
       if (t > NSVG_EPSILON && t < 1.0-NSVG_EPSILON)
         roots[count++] = t;
     }
   }
   for (j = 0; j < count; j++) {
     v = nsvg__evalBezier(roots[j], v0[i], v1[i], v2[i], v3[i]);
     bounds[0+i] = nsvg__minf(bounds[0+i], (float)v);
     bounds[2+i] = nsvg__maxf(bounds[2+i], (float)v);
   }
 }
}

static NSVGparser* nsvg__createParser(void)
{
 NSVGparser* p;
 p = (NSVGparser*)malloc(sizeof(NSVGparser));
 if (p == NULL) goto error;
 memset(p, 0, sizeof(NSVGparser));

 p->image = (NSVGimage*)malloc(sizeof(NSVGimage));
 if (p->image == NULL) goto error;
 memset(p->image, 0, sizeof(NSVGimage));

 // Init style
 nsvg__xformIdentity(p->attr[0].xform);
 memset(p->attr[0].id, 0, sizeof p->attr[0].id);
 p->attr[0].fillColor = NSVG_RGB(0,0,0);
 p->attr[0].strokeColor = NSVG_RGB(0,0,0);
 p->attr[0].opacity = 1;
 p->attr[0].fillOpacity = 1;
 p->attr[0].strokeOpacity = 1;
 p->attr[0].stopOpacity = 1;
 p->attr[0].strokeWidth = 1;
 p->attr[0].strokeLineJoin = NSVG_JOIN_MITER;
 p->attr[0].strokeLineCap = NSVG_CAP_BUTT;
 p->attr[0].miterLimit = 4;
 p->attr[0].fillRule = NSVG_FILLRULE_NONZERO;
 p->attr[0].hasFill = 1;
 p->attr[0].visible = 1;

 return p;

error:
 if (p) {
   if (p->image) free(p->image);
   free(p);
 }
 return NULL;
}

static void nsvg__deletePaths(NSVGpath* path)
{
 while (path) {
   NSVGpath *next = path->next;
   if (path->pts != NULL)
     free(path->pts);
   free(path);
   path = next;
 }
}

static void nsvg__deletePaint(NSVGpaint* paint)
{
 if (paint->type == NSVG_PAINT_LINEAR_GRADIENT || paint->type == NSVG_PAINT_RADIAL_GRADIENT)
   free(paint->gradient);
}

static void nsvg__deleteGradientData(NSVGgradientData* grad)
{
 NSVGgradientData* next;
 while (grad != NULL) {
   next = grad->next;
   free(grad->stops);
   free(grad);
   grad = next;
 }
}

static void nsvg__deleteParser(NSVGparser* p)
{
 if (p != NULL) {
   nsvg__deletePaths(p->plist);
   nsvg__deleteGradientData(p->gradients);
   nsvgDelete(p->image);
   free(p->pts);
   free(p);
 }
}

static void nsvg__resetPath(NSVGparser* p)
{
 p->npts = 0;
}

static void nsvg__addPoint(NSVGparser* p, float x, float y)
{
 if (p->npts+1 > p->cpts) {
   p->cpts = p->cpts ? p->cpts*2 : 8;
   p->pts = (float*)realloc(p->pts, p->cpts*2*sizeof(float));
   if (!p->pts) return;
 }
 p->pts[p->npts*2+0] = x;
 p->pts[p->npts*2+1] = y;
 p->npts++;
}

static void nsvg__moveTo(NSVGparser* p, float x, float y)
{
 if (p->npts > 0) {
   p->pts[(p->npts-1)*2+0] = x;
   p->pts[(p->npts-1)*2+1] = y;
 } else {
   nsvg__addPoint(p, x, y);
 }
}

static void nsvg__lineTo(NSVGparser* p, float x, float y)
{
 float px,py, dx,dy;
 if (p->npts > 0) {
   px = p->pts[(p->npts-1)*2+0];
   py = p->pts[(p->npts-1)*2+1];
   dx = x - px;
   dy = y - py;
   nsvg__addPoint(p, px + dx/3.0f, py + dy/3.0f);
   nsvg__addPoint(p, x - dx/3.0f, y - dy/3.0f);
   nsvg__addPoint(p, x, y);
 }
}

static void nsvg__cubicBezTo(NSVGparser* p, float cpx1, float cpy1, float cpx2, float cpy2, float x, float y)
{
 if (p->npts > 0) {
   nsvg__addPoint(p, cpx1, cpy1);
   nsvg__addPoint(p, cpx2, cpy2);
   nsvg__addPoint(p, x, y);
 }
}

static NSVGattrib* nsvg__getAttr(NSVGparser* p)
{
 return &p->attr[p->attrHead];
}

static void nsvg__pushAttr(NSVGparser* p)
{
 if (p->attrHead < NSVG_MAX_ATTR-1) {
   p->attrHead++;
   memcpy(&p->attr[p->attrHead], &p->attr[p->attrHead-1], sizeof(NSVGattrib));
 }
}

static void nsvg__popAttr(NSVGparser* p)
{
 if (p->attrHead > 0)
   p->attrHead--;
}

static float nsvg__actualOrigX(NSVGparser* p)
{
 return p->viewMinx;
}

static float nsvg__actualOrigY(NSVGparser* p)
{
 return p->viewMiny;
}

static float nsvg__actualWidth(NSVGparser* p)
{
 return p->viewWidth;
}

static float nsvg__actualHeight(NSVGparser* p)
{
 return p->viewHeight;
}

static float nsvg__actualLength(NSVGparser* p)
{
 float w = nsvg__actualWidth(p), h = nsvg__actualHeight(p);
 return sqrtf(w*w + h*h) / sqrtf(2.0f);
}

static float nsvg__convertToPixels(NSVGparser* p, NSVGcoordinate c, float orig, float length)
{
 NSVGattrib* attr = nsvg__getAttr(p);
 switch (c.units) {
   case NSVG_UNITS_USER:    return c.value;
   case NSVG_UNITS_PX:      return c.value;
   case NSVG_UNITS_PT:      return c.value / 72.0f * p->dpi;
   case NSVG_UNITS_PC:      return c.value / 6.0f * p->dpi;
   case NSVG_UNITS_MM:      return c.value / 25.4f * p->dpi;
   case NSVG_UNITS_CM:      return c.value / 2.54f * p->dpi;
   case NSVG_UNITS_IN:      return c.value * p->dpi;
   case NSVG_UNITS_EM:      return c.value * attr->fontSize;
   case NSVG_UNITS_EX:      return c.value * attr->fontSize * 0.52f; // x-height of Helvetica.
   case NSVG_UNITS_PERCENT: return orig + c.value / 100.0f * length;
   default:         return c.value;
 }
 return c.value;
}

static NSVGgradientData* nsvg__findGradientData(NSVGparser* p, const char* id)
{
 NSVGgradientData* grad = p->gradients;
 if (id == NULL || *id == '\0')
   return NULL;
 while (grad != NULL) {
   if (strcmp(grad->id, id) == 0)
     return grad;
   grad = grad->next;
 }
 return NULL;
}

static NSVGgradient* nsvg__createGradient(NSVGparser* p, const char* id, const float* localBounds, float *xform, signed char* paintType)
{
 NSVGgradientData* data = NULL;
 NSVGgradientData* ref = NULL;
 NSVGgradientStop* stops = NULL;
 NSVGgradient* grad;
 float ox, oy, sw, sh, sl;
 int nstops = 0;
 int refIter;

 data = nsvg__findGradientData(p, id);
 if (data == NULL) return NULL;

 // TODO: use ref to fill in all unset values too.
 ref = data;
 refIter = 0;
 while (ref != NULL) {
   NSVGgradientData* nextRef = NULL;
   if (stops == NULL && ref->stops != NULL) {
     stops = ref->stops;
     nstops = ref->nstops;
     break;
   }
   nextRef = nsvg__findGradientData(p, ref->ref);
   if (nextRef == ref) break; // prevent infite loops on malformed data
   ref = nextRef;
   refIter++;
   if (refIter > 32) break; // prevent infite loops on malformed data
 }
 if (stops == NULL) return NULL;

 grad = (NSVGgradient*)malloc(sizeof(NSVGgradient) + sizeof(NSVGgradientStop)*(nstops-1));
 if (grad == NULL) return NULL;

 // The shape width and height.
 if (data->units == NSVG_OBJECT_SPACE) {
   ox = localBounds[0];
   oy = localBounds[1];
   sw = localBounds[2] - localBounds[0];
   sh = localBounds[3] - localBounds[1];
 } else {
   ox = nsvg__actualOrigX(p);
   oy = nsvg__actualOrigY(p);
   sw = nsvg__actualWidth(p);
   sh = nsvg__actualHeight(p);
 }
 sl = sqrtf(sw*sw + sh*sh) / sqrtf(2.0f);

 if (data->type == NSVG_PAINT_LINEAR_GRADIENT) {
   float x1, y1, x2, y2, dx, dy;
   x1 = nsvg__convertToPixels(p, data->linear.x1, ox, sw);
   y1 = nsvg__convertToPixels(p, data->linear.y1, oy, sh);
   x2 = nsvg__convertToPixels(p, data->linear.x2, ox, sw);
   y2 = nsvg__convertToPixels(p, data->linear.y2, oy, sh);
   // Calculate transform aligned to the line
   dx = x2 - x1;
   dy = y2 - y1;
   grad->xform[0] = dy; grad->xform[1] = -dx;
   grad->xform[2] = dx; grad->xform[3] = dy;
   grad->xform[4] = x1; grad->xform[5] = y1;
 } else {
   float cx, cy, fx, fy, r;
   cx = nsvg__convertToPixels(p, data->radial.cx, ox, sw);
   cy = nsvg__convertToPixels(p, data->radial.cy, oy, sh);
   fx = nsvg__convertToPixels(p, data->radial.fx, ox, sw);
   fy = nsvg__convertToPixels(p, data->radial.fy, oy, sh);
   r = nsvg__convertToPixels(p, data->radial.r, 0, sl);
   // Calculate transform aligned to the circle
   grad->xform[0] = r; grad->xform[1] = 0;
   grad->xform[2] = 0; grad->xform[3] = r;
   grad->xform[4] = cx; grad->xform[5] = cy;
   grad->fx = fx / r;
   grad->fy = fy / r;
 }

 nsvg__xformMultiply(grad->xform, data->xform);
 nsvg__xformMultiply(grad->xform, xform);

 grad->spread = data->spread;
 memcpy(grad->stops, stops, nstops*sizeof(NSVGgradientStop));
 grad->nstops = nstops;

 *paintType = data->type;

 return grad;
}

static float nsvg__getAverageScale(float* t)
{
 float sx = sqrtf(t[0]*t[0] + t[2]*t[2]);
 float sy = sqrtf(t[1]*t[1] + t[3]*t[3]);
 return (sx + sy) * 0.5f;
}

static void nsvg__getLocalBounds(float* bounds, NSVGshape *shape, float* xform)
{
 NSVGpath* path;
 float curve[4*2], curveBounds[4];
 int i, first = 1;
 for (path = shape->paths; path != NULL; path = path->next) {
   nsvg__xformPoint(&curve[0], &curve[1], path->pts[0], path->pts[1], xform);
   for (i = 0; i < path->npts-1; i += 3) {
     nsvg__xformPoint(&curve[2], &curve[3], path->pts[(i+1)*2], path->pts[(i+1)*2+1], xform);
     nsvg__xformPoint(&curve[4], &curve[5], path->pts[(i+2)*2], path->pts[(i+2)*2+1], xform);
     nsvg__xformPoint(&curve[6], &curve[7], path->pts[(i+3)*2], path->pts[(i+3)*2+1], xform);
     nsvg__curveBounds(curveBounds, curve);
     if (first) {
       bounds[0] = curveBounds[0];
       bounds[1] = curveBounds[1];
       bounds[2] = curveBounds[2];
       bounds[3] = curveBounds[3];
       first = 0;
     } else {
       bounds[0] = nsvg__minf(bounds[0], curveBounds[0]);
       bounds[1] = nsvg__minf(bounds[1], curveBounds[1]);
       bounds[2] = nsvg__maxf(bounds[2], curveBounds[2]);
       bounds[3] = nsvg__maxf(bounds[3], curveBounds[3]);
     }
     curve[0] = curve[6];
     curve[1] = curve[7];
   }
 }
}

static void nsvg__addShape(NSVGparser* p)
{
 NSVGattrib* attr = nsvg__getAttr(p);
 float scale = 1.0f;
 NSVGshape* shape;
 NSVGpath* path;
 int i;

 if (p->plist == NULL)
   return;

 shape = (NSVGshape*)malloc(sizeof(NSVGshape));
 if (shape == NULL) goto error;
 memset(shape, 0, sizeof(NSVGshape));

 memcpy(shape->id, attr->id, sizeof shape->id);
 memcpy(shape->fillGradient, attr->fillGradient, sizeof shape->fillGradient);
 memcpy(shape->strokeGradient, attr->strokeGradient, sizeof shape->strokeGradient);
 memcpy(shape->xform, attr->xform, sizeof shape->xform);
 scale = nsvg__getAverageScale(attr->xform);
 shape->strokeWidth = attr->strokeWidth * scale;
 shape->strokeDashOffset = attr->strokeDashOffset * scale;
 shape->strokeDashCount = (char)attr->strokeDashCount;
 for (i = 0; i < attr->strokeDashCount; i++)
   shape->strokeDashArray[i] = attr->strokeDashArray[i] * scale;
 shape->strokeLineJoin = attr->strokeLineJoin;
 shape->strokeLineCap = attr->strokeLineCap;
 shape->miterLimit = attr->miterLimit;
 shape->fillRule = attr->fillRule;
 shape->opacity = attr->opacity;

 shape->paths = p->plist;
 p->plist = NULL;

 // Calculate shape bounds
 shape->bounds[0] = shape->paths->bounds[0];
 shape->bounds[1] = shape->paths->bounds[1];
 shape->bounds[2] = shape->paths->bounds[2];
 shape->bounds[3] = shape->paths->bounds[3];
 for (path = shape->paths->next; path != NULL; path = path->next) {
   shape->bounds[0] = nsvg__minf(shape->bounds[0], path->bounds[0]);
   shape->bounds[1] = nsvg__minf(shape->bounds[1], path->bounds[1]);
   shape->bounds[2] = nsvg__maxf(shape->bounds[2], path->bounds[2]);
   shape->bounds[3] = nsvg__maxf(shape->bounds[3], path->bounds[3]);
 }

 // Set fill
 if (attr->hasFill == 0) {
   shape->fill.type = NSVG_PAINT_NONE;
 } else if (attr->hasFill == 1) {
   shape->fill.type = NSVG_PAINT_COLOR;
   shape->fill.color = attr->fillColor;
   shape->fill.color |= (unsigned int)(attr->fillOpacity*255) << 24;
 } else if (attr->hasFill == 2) {
   shape->fill.type = NSVG_PAINT_UNDEF;
 }

 // Set stroke
 if (attr->hasStroke == 0) {
   shape->stroke.type = NSVG_PAINT_NONE;
 } else if (attr->hasStroke == 1) {
   shape->stroke.type = NSVG_PAINT_COLOR;
   shape->stroke.color = attr->strokeColor;
   shape->stroke.color |= (unsigned int)(attr->strokeOpacity*255) << 24;
 } else if (attr->hasStroke == 2) {
   shape->stroke.type = NSVG_PAINT_UNDEF;
 }

 // Set flags
 shape->flags = (attr->visible ? NSVG_FLAGS_VISIBLE : 0x00);

 // Add to tail
 if (p->image->shapes == NULL)
   p->image->shapes = shape;
 else
   p->shapesTail->next = shape;
 p->shapesTail = shape;

 return;

error:
 if (shape) free(shape);
}

static void nsvg__addPath(NSVGparser* p, char closed)
{
 NSVGattrib* attr = nsvg__getAttr(p);
 NSVGpath* path = NULL;
 float bounds[4];
 float* curve;
 int i;

 if (p->npts < 4)
   return;

 if (closed)
   nsvg__lineTo(p, p->pts[0], p->pts[1]);

 // Expect 1 + N*3 points (N = number of cubic bezier segments).
 if ((p->npts % 3) != 1)
   return;

 path = (NSVGpath*)malloc(sizeof(NSVGpath));
 if (path == NULL) goto error;
 memset(path, 0, sizeof(NSVGpath));

 path->pts = (float*)malloc(p->npts*2*sizeof(float));
 if (path->pts == NULL) goto error;
 path->closed = closed;
 path->npts = p->npts;

 // Transform path.
 for (i = 0; i < p->npts; ++i)
   nsvg__xformPoint(&path->pts[i*2], &path->pts[i*2+1], p->pts[i*2], p->pts[i*2+1], attr->xform);

 // Find bounds
 for (i = 0; i < path->npts-1; i += 3) {
   curve = &path->pts[i*2];
   nsvg__curveBounds(bounds, curve);
   if (i == 0) {
     path->bounds[0] = bounds[0];
     path->bounds[1] = bounds[1];
     path->bounds[2] = bounds[2];
     path->bounds[3] = bounds[3];
   } else {
     path->bounds[0] = nsvg__minf(path->bounds[0], bounds[0]);
     path->bounds[1] = nsvg__minf(path->bounds[1], bounds[1]);
     path->bounds[2] = nsvg__maxf(path->bounds[2], bounds[2]);
     path->bounds[3] = nsvg__maxf(path->bounds[3], bounds[3]);
   }
 }

 path->next = p->plist;
 p->plist = path;

 return;

error:
 if (path != NULL) {
   if (path->pts != NULL) free(path->pts);
   free(path);
 }
}

// We roll our own string to float because the std library one uses locale and messes things up.
static double nsvg__atof(const char* s)
{
 char* cur = (char*)s;
 char* end = NULL;
 double res = 0.0, sign = 1.0;
 long long intPart = 0, fracPart = 0;
 char hasIntPart = 0, hasFracPart = 0;

 // Parse optional sign
 if (*cur == '+') {
   cur++;
 } else if (*cur == '-') {
   sign = -1;
   cur++;
 }

 // Parse integer part
 if (nsvg__isdigit(*cur)) {
   // Parse digit sequence
   intPart = strtoll(cur, &end, 10);
   if (cur != end) {
     res = (double)intPart;
     hasIntPart = 1;
     cur = end;
   }
 }

 // Parse fractional part.
 if (*cur == '.') {
   cur++; // Skip '.'
   if (nsvg__isdigit(*cur)) {
     // Parse digit sequence
     fracPart = strtoll(cur, &end, 10);
     if (cur != end) {
       res += (double)fracPart / pow(10.0, (double)(end - cur));
       hasFracPart = 1;
       cur = end;
     }
   }
 }

 // A valid number should have integer or fractional part.
 if (!hasIntPart && !hasFracPart)
   return 0.0;

 // Parse optional exponent
 if (*cur == 'e' || *cur == 'E') {
   long expPart = 0;
   cur++; // skip 'E'
   expPart = strtol(cur, &end, 10); // Parse digit sequence with sign
   if (cur != end) {
     res *= pow(10.0, (double)expPart);
   }
 }

 return res * sign;
}


static const char* nsvg__parseNumber(const char* s, char* it, const int size)
{
 const int last = size-1;
 int i = 0;

 // sign
 if (*s == '-' || *s == '+') {
   if (i < last) it[i++] = *s;
   s++;
 }
 // integer part
 while (*s && nsvg__isdigit(*s)) {
   if (i < last) it[i++] = *s;
   s++;
 }
 if (*s == '.') {
   // decimal point
   if (i < last) it[i++] = *s;
   s++;
   // fraction part
   while (*s && nsvg__isdigit(*s)) {
     if (i < last) it[i++] = *s;
     s++;
   }
 }
 // exponent
 if ((*s == 'e' || *s == 'E') && (s[1] != 'm' && s[1] != 'x')) {
   if (i < last) it[i++] = *s;
   s++;
   if (*s == '-' || *s == '+') {
     if (i < last) it[i++] = *s;
     s++;
   }
   while (*s && nsvg__isdigit(*s)) {
     if (i < last) it[i++] = *s;
     s++;
   }
 }
 it[i] = '\0';

 return s;
}

static const char* nsvg__getNextPathItemWhenArcFlag(const char* s, char* it)
{
 it[0] = '\0';
 while (*s && (nsvg__isspace(*s) || *s == ',')) s++;
 if (!*s) return s;
 if (*s == '0' || *s == '1') {
   it[0] = *s++;
   it[1] = '\0';
   return s;
 }
 return s;
}

static const char* nsvg__getNextPathItem(const char* s, char* it)
{
 it[0] = '\0';
 // Skip white spaces and commas
 while (*s && (nsvg__isspace(*s) || *s == ',')) s++;
 if (!*s) return s;
 if (*s == '-' || *s == '+' || *s == '.' || nsvg__isdigit(*s)) {
   s = nsvg__parseNumber(s, it, 64);
 } else {
   // Parse command
   it[0] = *s++;
   it[1] = '\0';
   return s;
 }

 return s;
}

static unsigned int nsvg__parseColorHex(const char* str)
{
 unsigned int r=0, g=0, b=0;
 if (sscanf(str, "#%2x%2x%2x", &r, &g, &b) == 3 )   // 2 digit hex
   return NSVG_RGB(r, g, b);
 if (sscanf(str, "#%1x%1x%1x", &r, &g, &b) == 3 )   // 1 digit hex, e.g. #abc -> 0xccbbaa
   return NSVG_RGB(r*17, g*17, b*17);     // same effect as (r<<4|r), (g<<4|g), ..
 return NSVG_RGB(128, 128, 128);
}

// Parse rgb color. The pointer 'str' must point at "rgb(" (4+ characters).
// This function returns gray (rgb(128, 128, 128) == '#808080') on parse errors
// for backwards compatibility. Note: other image viewers return black instead.

static unsigned int nsvg__parseColorRGB(const char* str)
{
 int i;
 unsigned int rgbi[3];
 float rgbf[3];
 // try decimal integers first
 if (sscanf(str, "rgb(%u, %u, %u)", &rgbi[0], &rgbi[1], &rgbi[2]) != 3) {
   // integers failed, try percent values (float, locale independent)
   const char delimiter[3] = {',', ',', ')'};
   str += 4; // skip "rgb("
   for (i = 0; i < 3; i++) {
     while (*str && (nsvg__isspace(*str))) str++;   // skip leading spaces
     if (*str == '+') str++;        // skip '+' (don't allow '-')
     if (!*str) break;
     rgbf[i] = nsvg__atof(str);

     // Note 1: it would be great if nsvg__atof() returned how many
     // bytes it consumed but it doesn't. We need to skip the number,
     // the '%' character, spaces, and the delimiter ',' or ')'.

     // Note 2: The following code does not allow values like "33.%",
     // i.e. a decimal point w/o fractional part, but this is consistent
     // with other image viewers, e.g. firefox, chrome, eog, gimp.

     while (*str && nsvg__isdigit(*str)) str++;   // skip integer part
     if (*str == '.') {
       str++;
       if (!nsvg__isdigit(*str)) break;   // error: no digit after '.'
       while (*str && nsvg__isdigit(*str)) str++; // skip fractional part
     }
     if (*str == '%') str++; else break;
     while (nsvg__isspace(*str)) str++;
     if (*str == delimiter[i]) str++;
     else break;
   }
   if (i == 3) {
     rgbi[0] = roundf(rgbf[0] * 2.55f);
     rgbi[1] = roundf(rgbf[1] * 2.55f);
     rgbi[2] = roundf(rgbf[2] * 2.55f);
   } else {
     rgbi[0] = rgbi[1] = rgbi[2] = 128;
   }
 }
 // clip values as the CSS spec requires
 for (i = 0; i < 3; i++) {
   if (rgbi[i] > 255) rgbi[i] = 255;
 }
 return NSVG_RGB(rgbi[0], rgbi[1], rgbi[2]);
}

typedef struct NSVGNamedColor {
 const char* name;
 unsigned int color;
} NSVGNamedColor;

NSVGNamedColor nsvg__colors[] = {

 { "red", NSVG_RGB(255, 0, 0) },
 { "green", NSVG_RGB( 0, 128, 0) },
 { "blue", NSVG_RGB( 0, 0, 255) },
 { "yellow", NSVG_RGB(255, 255, 0) },
 { "cyan", NSVG_RGB( 0, 255, 255) },
 { "magenta", NSVG_RGB(255, 0, 255) },
 { "black", NSVG_RGB( 0, 0, 0) },
 { "grey", NSVG_RGB(128, 128, 128) },
 { "gray", NSVG_RGB(128, 128, 128) },
 { "white", NSVG_RGB(255, 255, 255) },

#ifdef NANOSVG_ALL_COLOR_KEYWORDS
 { "aliceblue", NSVG_RGB(240, 248, 255) },
 { "antiquewhite", NSVG_RGB(250, 235, 215) },
 { "aqua", NSVG_RGB( 0, 255, 255) },
 { "aquamarine", NSVG_RGB(127, 255, 212) },
 { "azure", NSVG_RGB(240, 255, 255) },
 { "beige", NSVG_RGB(245, 245, 220) },
 { "bisque", NSVG_RGB(255, 228, 196) },
 { "blanchedalmond", NSVG_RGB(255, 235, 205) },
 { "blueviolet", NSVG_RGB(138, 43, 226) },
 { "brown", NSVG_RGB(165, 42, 42) },
 { "burlywood", NSVG_RGB(222, 184, 135) },
 { "cadetblue", NSVG_RGB( 95, 158, 160) },
 { "chartreuse", NSVG_RGB(127, 255, 0) },
 { "chocolate", NSVG_RGB(210, 105, 30) },
 { "coral", NSVG_RGB(255, 127, 80) },
 { "cornflowerblue", NSVG_RGB(100, 149, 237) },
 { "cornsilk", NSVG_RGB(255, 248, 220) },
 { "crimson", NSVG_RGB(220, 20, 60) },
 { "darkblue", NSVG_RGB( 0, 0, 139) },
 { "darkcyan", NSVG_RGB( 0, 139, 139) },
 { "darkgoldenrod", NSVG_RGB(184, 134, 11) },
 { "darkgray", NSVG_RGB(169, 169, 169) },
 { "darkgreen", NSVG_RGB( 0, 100, 0) },
 { "darkgrey", NSVG_RGB(169, 169, 169) },
 { "darkkhaki", NSVG_RGB(189, 183, 107) },
 { "darkmagenta", NSVG_RGB(139, 0, 139) },
 { "darkolivegreen", NSVG_RGB( 85, 107, 47) },
 { "darkorange", NSVG_RGB(255, 140, 0) },
 { "darkorchid", NSVG_RGB(153, 50, 204) },
 { "darkred", NSVG_RGB(139, 0, 0) },
 { "darksalmon", NSVG_RGB(233, 150, 122) },
 { "darkseagreen", NSVG_RGB(143, 188, 143) },
 { "darkslateblue", NSVG_RGB( 72, 61, 139) },
 { "darkslategray", NSVG_RGB( 47, 79, 79) },
 { "darkslategrey", NSVG_RGB( 47, 79, 79) },
 { "darkturquoise", NSVG_RGB( 0, 206, 209) },
 { "darkviolet", NSVG_RGB(148, 0, 211) },
 { "deeppink", NSVG_RGB(255, 20, 147) },
 { "deepskyblue", NSVG_RGB( 0, 191, 255) },
 { "dimgray", NSVG_RGB(105, 105, 105) },
 { "dimgrey", NSVG_RGB(105, 105, 105) },
 { "dodgerblue", NSVG_RGB( 30, 144, 255) },
 { "firebrick", NSVG_RGB(178, 34, 34) },
 { "floralwhite", NSVG_RGB(255, 250, 240) },
 { "forestgreen", NSVG_RGB( 34, 139, 34) },
 { "fuchsia", NSVG_RGB(255, 0, 255) },
 { "gainsboro", NSVG_RGB(220, 220, 220) },
 { "ghostwhite", NSVG_RGB(248, 248, 255) },
 { "gold", NSVG_RGB(255, 215, 0) },
 { "goldenrod", NSVG_RGB(218, 165, 32) },
 { "greenyellow", NSVG_RGB(173, 255, 47) },
 { "honeydew", NSVG_RGB(240, 255, 240) },
 { "hotpink", NSVG_RGB(255, 105, 180) },
 { "indianred", NSVG_RGB(205, 92, 92) },
 { "indigo", NSVG_RGB( 75, 0, 130) },
 { "ivory", NSVG_RGB(255, 255, 240) },
 { "khaki", NSVG_RGB(240, 230, 140) },
 { "lavender", NSVG_RGB(230, 230, 250) },
 { "lavenderblush", NSVG_RGB(255, 240, 245) },
 { "lawngreen", NSVG_RGB(124, 252, 0) },
 { "lemonchiffon", NSVG_RGB(255, 250, 205) },
 { "lightblue", NSVG_RGB(173, 216, 230) },
 { "lightcoral", NSVG_RGB(240, 128, 128) },
 { "lightcyan", NSVG_RGB(224, 255, 255) },
 { "lightgoldenrodyellow", NSVG_RGB(250, 250, 210) },
 { "lightgray", NSVG_RGB(211, 211, 211) },
 { "lightgreen", NSVG_RGB(144, 238, 144) },
 { "lightgrey", NSVG_RGB(211, 211, 211) },
 { "lightpink", NSVG_RGB(255, 182, 193) },
 { "lightsalmon", NSVG_RGB(255, 160, 122) },
 { "lightseagreen", NSVG_RGB( 32, 178, 170) },
 { "lightskyblue", NSVG_RGB(135, 206, 250) },
 { "lightslategray", NSVG_RGB(119, 136, 153) },
 { "lightslategrey", NSVG_RGB(119, 136, 153) },
 { "lightsteelblue", NSVG_RGB(176, 196, 222) },
 { "lightyellow", NSVG_RGB(255, 255, 224) },
 { "lime", NSVG_RGB( 0, 255, 0) },
 { "limegreen", NSVG_RGB( 50, 205, 50) },
 { "linen", NSVG_RGB(250, 240, 230) },
 { "maroon", NSVG_RGB(128, 0, 0) },
 { "mediumaquamarine", NSVG_RGB(102, 205, 170) },
 { "mediumblue", NSVG_RGB( 0, 0, 205) },
 { "mediumorchid", NSVG_RGB(186, 85, 211) },
 { "mediumpurple", NSVG_RGB(147, 112, 219) },
 { "mediumseagreen", NSVG_RGB( 60, 179, 113) },
 { "mediumslateblue", NSVG_RGB(123, 104, 238) },
 { "mediumspringgreen", NSVG_RGB( 0, 250, 154) },
 { "mediumturquoise", NSVG_RGB( 72, 209, 204) },
 { "mediumvioletred", NSVG_RGB(199, 21, 133) },
 { "midnightblue", NSVG_RGB( 25, 25, 112) },
 { "mintcream", NSVG_RGB(245, 255, 250) },
 { "mistyrose", NSVG_RGB(255, 228, 225) },
 { "moccasin", NSVG_RGB(255, 228, 181) },
 { "navajowhite", NSVG_RGB(255, 222, 173) },
 { "navy", NSVG_RGB( 0, 0, 128) },
 { "oldlace", NSVG_RGB(253, 245, 230) },
 { "olive", NSVG_RGB(128, 128, 0) },
 { "olivedrab", NSVG_RGB(107, 142, 35) },
 { "orange", NSVG_RGB(255, 165, 0) },
 { "orangered", NSVG_RGB(255, 69, 0) },
 { "orchid", NSVG_RGB(218, 112, 214) },
 { "palegoldenrod", NSVG_RGB(238, 232, 170) },
 { "palegreen", NSVG_RGB(152, 251, 152) },
 { "paleturquoise", NSVG_RGB(175, 238, 238) },
 { "palevioletred", NSVG_RGB(219, 112, 147) },
 { "papayawhip", NSVG_RGB(255, 239, 213) },
 { "peachpuff", NSVG_RGB(255, 218, 185) },
 { "peru", NSVG_RGB(205, 133, 63) },
 { "pink", NSVG_RGB(255, 192, 203) },
 { "plum", NSVG_RGB(221, 160, 221) },
 { "powderblue", NSVG_RGB(176, 224, 230) },
 { "purple", NSVG_RGB(128, 0, 128) },
 { "rosybrown", NSVG_RGB(188, 143, 143) },
 { "royalblue", NSVG_RGB( 65, 105, 225) },
 { "saddlebrown", NSVG_RGB(139, 69, 19) },
 { "salmon", NSVG_RGB(250, 128, 114) },
 { "sandybrown", NSVG_RGB(244, 164, 96) },
 { "seagreen", NSVG_RGB( 46, 139, 87) },
 { "seashell", NSVG_RGB(255, 245, 238) },
 { "sienna", NSVG_RGB(160, 82, 45) },
 { "silver", NSVG_RGB(192, 192, 192) },
 { "skyblue", NSVG_RGB(135, 206, 235) },
 { "slateblue", NSVG_RGB(106, 90, 205) },
 { "slategray", NSVG_RGB(112, 128, 144) },
 { "slategrey", NSVG_RGB(112, 128, 144) },
 { "snow", NSVG_RGB(255, 250, 250) },
 { "springgreen", NSVG_RGB( 0, 255, 127) },
 { "steelblue", NSVG_RGB( 70, 130, 180) },
 { "tan", NSVG_RGB(210, 180, 140) },
 { "teal", NSVG_RGB( 0, 128, 128) },
 { "thistle", NSVG_RGB(216, 191, 216) },
 { "tomato", NSVG_RGB(255, 99, 71) },
 { "turquoise", NSVG_RGB( 64, 224, 208) },
 { "violet", NSVG_RGB(238, 130, 238) },
 { "wheat", NSVG_RGB(245, 222, 179) },
 { "whitesmoke", NSVG_RGB(245, 245, 245) },
 { "yellowgreen", NSVG_RGB(154, 205, 50) },
#endif
};

static unsigned int nsvg__parseColorName(const char* str)
{
 int i, ncolors = sizeof(nsvg__colors) / sizeof(NSVGNamedColor);

 for (i = 0; i < ncolors; i++) {
   if (strcmp(nsvg__colors[i].name, str) == 0) {
     return nsvg__colors[i].color;
   }
 }

 return NSVG_RGB(128, 128, 128);
}

static unsigned int nsvg__parseColor(const char* str)
{
 size_t len = 0;
 while(*str == ' ') ++str;
 len = strlen(str);
 if (len >= 1 && *str == '#')
   return nsvg__parseColorHex(str);
 else if (len >= 4 && str[0] == 'r' && str[1] == 'g' && str[2] == 'b' && str[3] == '(')
   return nsvg__parseColorRGB(str);
 return nsvg__parseColorName(str);
}

static float nsvg__parseOpacity(const char* str)
{
 float val = nsvg__atof(str);
 if (val < 0.0f) val = 0.0f;
 if (val > 1.0f) val = 1.0f;
 return val;
}

static float nsvg__parseMiterLimit(const char* str)
{
 float val = nsvg__atof(str);
 if (val < 0.0f) val = 0.0f;
 return val;
}

static int nsvg__parseUnits(const char* units)
{
 if (units[0] == 'p' && units[1] == 'x')
   return NSVG_UNITS_PX;
 else if (units[0] == 'p' && units[1] == 't')
   return NSVG_UNITS_PT;
 else if (units[0] == 'p' && units[1] == 'c')
   return NSVG_UNITS_PC;
 else if (units[0] == 'm' && units[1] == 'm')
   return NSVG_UNITS_MM;
 else if (units[0] == 'c' && units[1] == 'm')
   return NSVG_UNITS_CM;
 else if (units[0] == 'i' && units[1] == 'n')
   return NSVG_UNITS_IN;
 else if (units[0] == '%')
   return NSVG_UNITS_PERCENT;
 else if (units[0] == 'e' && units[1] == 'm')
   return NSVG_UNITS_EM;
 else if (units[0] == 'e' && units[1] == 'x')
   return NSVG_UNITS_EX;
 return NSVG_UNITS_USER;
}

static int nsvg__isCoordinate(const char* s)
{
 // optional sign
 if (*s == '-' || *s == '+')
   s++;
 // must have at least one digit, or start by a dot
 return (nsvg__isdigit(*s) || *s == '.');
}

static NSVGcoordinate nsvg__parseCoordinateRaw(const char* str)
{
 NSVGcoordinate coord = {0, NSVG_UNITS_USER};
 char buf[64];
 coord.units = nsvg__parseUnits(nsvg__parseNumber(str, buf, 64));
 coord.value = nsvg__atof(buf);
 return coord;
}

static NSVGcoordinate nsvg__coord(float v, int units)
{
 NSVGcoordinate coord = {v, units};
 return coord;
}

static float nsvg__parseCoordinate(NSVGparser* p, const char* str, float orig, float length)
{
 NSVGcoordinate coord = nsvg__parseCoordinateRaw(str);
 return nsvg__convertToPixels(p, coord, orig, length);
}

static int nsvg__parseTransformArgs(const char* str, float* args, int maxNa, int* na)
{
 const char* end;
 const char* ptr;
 char it[64];

 *na = 0;
 ptr = str;
 while (*ptr && *ptr != '(') ++ptr;
 if (*ptr == 0)
   return 1;
 end = ptr;
 while (*end && *end != ')') ++end;
 if (*end == 0)
   return 1;

 while (ptr < end) {
   if (*ptr == '-' || *ptr == '+' || *ptr == '.' || nsvg__isdigit(*ptr)) {
     if (*na >= maxNa) return 0;
     ptr = nsvg__parseNumber(ptr, it, 64);
     args[(*na)++] = (float)nsvg__atof(it);
   } else {
     ++ptr;
   }
 }
 return (int)(end - str);
}


static int nsvg__parseMatrix(float* xform, const char* str)
{
 float t[6];
 int na = 0;
 int len = nsvg__parseTransformArgs(str, t, 6, &na);
 if (na != 6) return len;
 memcpy(xform, t, sizeof(float)*6);
 return len;
}

static int nsvg__parseTranslate(float* xform, const char* str)
{
 float args[2];
 float t[6];
 int na = 0;
 int len = nsvg__parseTransformArgs(str, args, 2, &na);
 if (na == 1) args[1] = 0.0;

 nsvg__xformSetTranslation(t, args[0], args[1]);
 memcpy(xform, t, sizeof(float)*6);
 return len;
}

static int nsvg__parseScale(float* xform, const char* str)
{
 float args[2];
 int na = 0;
 float t[6];
 int len = nsvg__parseTransformArgs(str, args, 2, &na);
 if (na == 1) args[1] = args[0];
 nsvg__xformSetScale(t, args[0], args[1]);
 memcpy(xform, t, sizeof(float)*6);
 return len;
}

static int nsvg__parseSkewX(float* xform, const char* str)
{
 float args[1];
 int na = 0;
 float t[6];
 int len = nsvg__parseTransformArgs(str, args, 1, &na);
 nsvg__xformSetSkewX(t, args[0]/180.0f*NSVG_PI);
 memcpy(xform, t, sizeof(float)*6);
 return len;
}

static int nsvg__parseSkewY(float* xform, const char* str)
{
 float args[1];
 int na = 0;
 float t[6];
 int len = nsvg__parseTransformArgs(str, args, 1, &na);
 nsvg__xformSetSkewY(t, args[0]/180.0f*NSVG_PI);
 memcpy(xform, t, sizeof(float)*6);
 return len;
}

static int nsvg__parseRotate(float* xform, const char* str)
{
 float args[3];
 int na = 0;
 float m[6];
 float t[6];
 int len = nsvg__parseTransformArgs(str, args, 3, &na);
 if (na == 1)
   args[1] = args[2] = 0.0f;
 nsvg__xformIdentity(m);

 if (na > 1) {
   nsvg__xformSetTranslation(t, -args[1], -args[2]);
   nsvg__xformMultiply(m, t);
 }

 nsvg__xformSetRotation(t, args[0]/180.0f*NSVG_PI);
 nsvg__xformMultiply(m, t);

 if (na > 1) {
   nsvg__xformSetTranslation(t, args[1], args[2]);
   nsvg__xformMultiply(m, t);
 }

 memcpy(xform, m, sizeof(float)*6);

 return len;
}

static void nsvg__parseTransform(float* xform, const char* str)
{
 float t[6];
 int len;
 nsvg__xformIdentity(xform);
 while (*str)
 {
   if (strncmp(str, "matrix", 6) == 0)
     len = nsvg__parseMatrix(t, str);
   else if (strncmp(str, "translate", 9) == 0)
     len = nsvg__parseTranslate(t, str);
   else if (strncmp(str, "scale", 5) == 0)
     len = nsvg__parseScale(t, str);
   else if (strncmp(str, "rotate", 6) == 0)
     len = nsvg__parseRotate(t, str);
   else if (strncmp(str, "skewX", 5) == 0)
     len = nsvg__parseSkewX(t, str);
   else if (strncmp(str, "skewY", 5) == 0)
     len = nsvg__parseSkewY(t, str);
   else{
     ++str;
     continue;
   }
   if (len != 0) {
     str += len;
   } else {
     ++str;
     continue;
   }

   nsvg__xformPremultiply(xform, t);
 }
}

static void nsvg__parseUrl(char* id, const char* str)
{
 int i = 0;
 str += 4; // "url(";
 if (*str && *str == '#')
   str++;
 while (i < 63 && *str && *str != ')') {
   id[i] = *str++;
   i++;
 }
 id[i] = '\0';
}

static char nsvg__parseLineCap(const char* str)
{
 if (strcmp(str, "butt") == 0)
   return NSVG_CAP_BUTT;
 else if (strcmp(str, "round") == 0)
   return NSVG_CAP_ROUND;
 else if (strcmp(str, "square") == 0)
   return NSVG_CAP_SQUARE;
 // TODO: handle inherit.
 return NSVG_CAP_BUTT;
}

static char nsvg__parseLineJoin(const char* str)
{
 if (strcmp(str, "miter") == 0)
   return NSVG_JOIN_MITER;
 else if (strcmp(str, "round") == 0)
   return NSVG_JOIN_ROUND;
 else if (strcmp(str, "bevel") == 0)
   return NSVG_JOIN_BEVEL;
 // TODO: handle inherit.
 return NSVG_JOIN_MITER;
}

static char nsvg__parseFillRule(const char* str)
{
 if (strcmp(str, "nonzero") == 0)
   return NSVG_FILLRULE_NONZERO;
 else if (strcmp(str, "evenodd") == 0)
   return NSVG_FILLRULE_EVENODD;
 // TODO: handle inherit.
 return NSVG_FILLRULE_NONZERO;
}

static const char* nsvg__getNextDashItem(const char* s, char* it)
{
 int n = 0;
 it[0] = '\0';
 // Skip white spaces and commas
 while (*s && (nsvg__isspace(*s) || *s == ',')) s++;
 // Advance until whitespace, comma or end.
 while (*s && (!nsvg__isspace(*s) && *s != ',')) {
   if (n < 63)
     it[n++] = *s;
   s++;
 }
 it[n++] = '\0';
 return s;
}

static int nsvg__parseStrokeDashArray(NSVGparser* p, const char* str, float* strokeDashArray)
{
 char item[64];
 int count = 0, i;
 float sum = 0.0f;

 // Handle "none"
 if (str[0] == 'n')
   return 0;

 // Parse dashes
 while (*str) {
   str = nsvg__getNextDashItem(str, item);
   if (!*item) break;
   if (count < NSVG_MAX_DASHES)
     strokeDashArray[count++] = fabsf(nsvg__parseCoordinate(p, item, 0.0f, nsvg__actualLength(p)));
 }

 for (i = 0; i < count; i++)
   sum += strokeDashArray[i];
 if (sum <= 1e-6f)
   count = 0;

 return count;
}

static void nsvg__parseStyle(NSVGparser* p, const char* str);

static int nsvg__parseAttr(NSVGparser* p, const char* name, const char* value)
{
 float xform[6];
 NSVGattrib* attr = nsvg__getAttr(p);
 if (!attr) return 0;

 if (strcmp(name, "style") == 0) {
   nsvg__parseStyle(p, value);
 } else if (strcmp(name, "display") == 0) {
   if (strcmp(value, "none") == 0)
     attr->visible = 0;
   // Don't reset ->visible on display:inline, one display:none hides the whole subtree

 } else if (strcmp(name, "fill") == 0) {
   if (strcmp(value, "none") == 0) {
     attr->hasFill = 0;
   } else if (strncmp(value, "url(", 4) == 0) {
     attr->hasFill = 2;
     nsvg__parseUrl(attr->fillGradient, value);
   } else {
     attr->hasFill = 1;
     attr->fillColor = nsvg__parseColor(value);
   }
 } else if (strcmp(name, "opacity") == 0) {
   attr->opacity = nsvg__parseOpacity(value);
 } else if (strcmp(name, "fill-opacity") == 0) {
   attr->fillOpacity = nsvg__parseOpacity(value);
 } else if (strcmp(name, "stroke") == 0) {
   if (strcmp(value, "none") == 0) {
     attr->hasStroke = 0;
   } else if (strncmp(value, "url(", 4) == 0) {
     attr->hasStroke = 2;
     nsvg__parseUrl(attr->strokeGradient, value);
   } else {
     attr->hasStroke = 1;
     attr->strokeColor = nsvg__parseColor(value);
   }
 } else if (strcmp(name, "stroke-width") == 0) {
   attr->strokeWidth = nsvg__parseCoordinate(p, value, 0.0f, nsvg__actualLength(p));
 } else if (strcmp(name, "stroke-dasharray") == 0) {
   attr->strokeDashCount = nsvg__parseStrokeDashArray(p, value, attr->strokeDashArray);
 } else if (strcmp(name, "stroke-dashoffset") == 0) {
   attr->strokeDashOffset = nsvg__parseCoordinate(p, value, 0.0f, nsvg__actualLength(p));
 } else if (strcmp(name, "stroke-opacity") == 0) {
   attr->strokeOpacity = nsvg__parseOpacity(value);
 } else if (strcmp(name, "stroke-linecap") == 0) {
   attr->strokeLineCap = nsvg__parseLineCap(value);
 } else if (strcmp(name, "stroke-linejoin") == 0) {
   attr->strokeLineJoin = nsvg__parseLineJoin(value);
 } else if (strcmp(name, "stroke-miterlimit") == 0) {
   attr->miterLimit = nsvg__parseMiterLimit(value);
 } else if (strcmp(name, "fill-rule") == 0) {
   attr->fillRule = nsvg__parseFillRule(value);
 } else if (strcmp(name, "font-size") == 0) {
   attr->fontSize = nsvg__parseCoordinate(p, value, 0.0f, nsvg__actualLength(p));
 } else if (strcmp(name, "transform") == 0) {
   nsvg__parseTransform(xform, value);
   nsvg__xformPremultiply(attr->xform, xform);
 } else if (strcmp(name, "stop-color") == 0) {
   attr->stopColor = nsvg__parseColor(value);
 } else if (strcmp(name, "stop-opacity") == 0) {
   attr->stopOpacity = nsvg__parseOpacity(value);
 } else if (strcmp(name, "offset") == 0) {
   attr->stopOffset = nsvg__parseCoordinate(p, value, 0.0f, 1.0f);
 } else if (strcmp(name, "id") == 0) {
   strncpy(attr->id, value, 63);
   attr->id[63] = '\0';
 } else {
   return 0;
 }
 return 1;
}

static int nsvg__parseNameValue(NSVGparser* p, const char* start, const char* end)
{
 const char* str;
 const char* val;
 char name[512];
 char value[512];
 int n;

 str = start;
 while (str < end && *str != ':') ++str;

 val = str;

 // Right Trim
 while (str > start &&  (*str == ':' || nsvg__isspace(*str))) --str;
 ++str;

 n = (int)(str - start);
 if (n > 511) n = 511;
 if (n) memcpy(name, start, n);
 name[n] = 0;

 while (val < end && (*val == ':' || nsvg__isspace(*val))) ++val;

 n = (int)(end - val);
 if (n > 511) n = 511;
 if (n) memcpy(value, val, n);
 value[n] = 0;

 return nsvg__parseAttr(p, name, value);
}

static void nsvg__parseStyle(NSVGparser* p, const char* str)
{
 const char* start;
 const char* end;

 while (*str) {
   // Left Trim
   while(*str && nsvg__isspace(*str)) ++str;
   start = str;
   while(*str && *str != ';') ++str;
   end = str;

   // Right Trim
   while (end > start &&  (*end == ';' || nsvg__isspace(*end))) --end;
   ++end;

   nsvg__parseNameValue(p, start, end);
   if (*str) ++str;
 }
}

static void nsvg__parseAttribs(NSVGparser* p, const char** attr)
{
 int i;
 for (i = 0; attr[i]; i += 2)
 {
   if (strcmp(attr[i], "style") == 0)
     nsvg__parseStyle(p, attr[i + 1]);
   else
     nsvg__parseAttr(p, attr[i], attr[i + 1]);
 }
}

static int nsvg__getArgsPerElement(char cmd)
{
 switch (cmd) {
   case 'v':
   case 'V':
   case 'h':
   case 'H':
     return 1;
   case 'm':
   case 'M':
   case 'l':
   case 'L':
   case 't':
   case 'T':
     return 2;
   case 'q':
   case 'Q':
   case 's':
   case 'S':
     return 4;
   case 'c':
   case 'C':
     return 6;
   case 'a':
   case 'A':
     return 7;
   case 'z':
   case 'Z':
     return 0;
 }
 return -1;
}

static void nsvg__pathMoveTo(NSVGparser* p, float* cpx, float* cpy, float* args, int rel)
{
 if (rel) {
   *cpx += args[0];
   *cpy += args[1];
 } else {
   *cpx = args[0];
   *cpy = args[1];
 }
 nsvg__moveTo(p, *cpx, *cpy);
}

static void nsvg__pathLineTo(NSVGparser* p, float* cpx, float* cpy, float* args, int rel)
{
 if (rel) {
   *cpx += args[0];
   *cpy += args[1];
 } else {
   *cpx = args[0];
   *cpy = args[1];
 }
 nsvg__lineTo(p, *cpx, *cpy);
}

static void nsvg__pathHLineTo(NSVGparser* p, float* cpx, float* cpy, float* args, int rel)
{
 if (rel)
   *cpx += args[0];
 else
   *cpx = args[0];
 nsvg__lineTo(p, *cpx, *cpy);
}

static void nsvg__pathVLineTo(NSVGparser* p, float* cpx, float* cpy, float* args, int rel)
{
 if (rel)
   *cpy += args[0];
 else
   *cpy = args[0];
 nsvg__lineTo(p, *cpx, *cpy);
}

static void nsvg__pathCubicBezTo(NSVGparser* p, float* cpx, float* cpy,
                float* cpx2, float* cpy2, float* args, int rel)
{
 float x2, y2, cx1, cy1, cx2, cy2;

 if (rel) {
   cx1 = *cpx + args[0];
   cy1 = *cpy + args[1];
   cx2 = *cpx + args[2];
   cy2 = *cpy + args[3];
   x2 = *cpx + args[4];
   y2 = *cpy + args[5];
 } else {
   cx1 = args[0];
   cy1 = args[1];
   cx2 = args[2];
   cy2 = args[3];
   x2 = args[4];
   y2 = args[5];
 }

 nsvg__cubicBezTo(p, cx1,cy1, cx2,cy2, x2,y2);

 *cpx2 = cx2;
 *cpy2 = cy2;
 *cpx = x2;
 *cpy = y2;
}

static void nsvg__pathCubicBezShortTo(NSVGparser* p, float* cpx, float* cpy,
                   float* cpx2, float* cpy2, float* args, int rel)
{
 float x1, y1, x2, y2, cx1, cy1, cx2, cy2;

 x1 = *cpx;
 y1 = *cpy;
 if (rel) {
   cx2 = *cpx + args[0];
   cy2 = *cpy + args[1];
   x2 = *cpx + args[2];
   y2 = *cpy + args[3];
 } else {
   cx2 = args[0];
   cy2 = args[1];
   x2 = args[2];
   y2 = args[3];
 }

 cx1 = 2*x1 - *cpx2;
 cy1 = 2*y1 - *cpy2;

 nsvg__cubicBezTo(p, cx1,cy1, cx2,cy2, x2,y2);

 *cpx2 = cx2;
 *cpy2 = cy2;
 *cpx = x2;
 *cpy = y2;
}

static void nsvg__pathQuadBezTo(NSVGparser* p, float* cpx, float* cpy,
               float* cpx2, float* cpy2, float* args, int rel)
{
 float x1, y1, x2, y2, cx, cy;
 float cx1, cy1, cx2, cy2;

 x1 = *cpx;
 y1 = *cpy;
 if (rel) {
   cx = *cpx + args[0];
   cy = *cpy + args[1];
   x2 = *cpx + args[2];
   y2 = *cpy + args[3];
 } else {
   cx = args[0];
   cy = args[1];
   x2 = args[2];
   y2 = args[3];
 }

 // Convert to cubic bezier
 cx1 = x1 + 2.0f/3.0f*(cx - x1);
 cy1 = y1 + 2.0f/3.0f*(cy - y1);
 cx2 = x2 + 2.0f/3.0f*(cx - x2);
 cy2 = y2 + 2.0f/3.0f*(cy - y2);

 nsvg__cubicBezTo(p, cx1,cy1, cx2,cy2, x2,y2);

 *cpx2 = cx;
 *cpy2 = cy;
 *cpx = x2;
 *cpy = y2;
}

static void nsvg__pathQuadBezShortTo(NSVGparser* p, float* cpx, float* cpy,
                  float* cpx2, float* cpy2, float* args, int rel)
{
 float x1, y1, x2, y2, cx, cy;
 float cx1, cy1, cx2, cy2;

 x1 = *cpx;
 y1 = *cpy;
 if (rel) {
   x2 = *cpx + args[0];
   y2 = *cpy + args[1];
 } else {
   x2 = args[0];
   y2 = args[1];
 }

 cx = 2*x1 - *cpx2;
 cy = 2*y1 - *cpy2;

 // Convert to cubix bezier
 cx1 = x1 + 2.0f/3.0f*(cx - x1);
 cy1 = y1 + 2.0f/3.0f*(cy - y1);
 cx2 = x2 + 2.0f/3.0f*(cx - x2);
 cy2 = y2 + 2.0f/3.0f*(cy - y2);

 nsvg__cubicBezTo(p, cx1,cy1, cx2,cy2, x2,y2);

 *cpx2 = cx;
 *cpy2 = cy;
 *cpx = x2;
 *cpy = y2;
}

static float nsvg__sqr(float x) { return x*x; }
static float nsvg__vmag(float x, float y) { return sqrtf(x*x + y*y); }

static float nsvg__vecrat(float ux, float uy, float vx, float vy)
{
 return (ux*vx + uy*vy) / (nsvg__vmag(ux,uy) * nsvg__vmag(vx,vy));
}

static float nsvg__vecang(float ux, float uy, float vx, float vy)
{
 float r = nsvg__vecrat(ux,uy, vx,vy);
 if (r < -1.0f) r = -1.0f;
 if (r > 1.0f) r = 1.0f;
 return ((ux*vy < uy*vx) ? -1.0f : 1.0f) * acosf(r);
}

static void nsvg__pathArcTo(NSVGparser* p, float* cpx, float* cpy, float* args, int rel)
{
 // Ported from canvg (https://code.google.com/p/canvg/)
 float rx, ry, rotx;
 float x1, y1, x2, y2, cx, cy, dx, dy, d;
 float x1p, y1p, cxp, cyp, s, sa, sb;
 float ux, uy, vx, vy, a1, da;
 float x, y, tanx, tany, a, px = 0, py = 0, ptanx = 0, ptany = 0, t[6];
 float sinrx, cosrx;
 int fa, fs;
 int i, ndivs;
 float hda, kappa;

 rx = fabsf(args[0]);       // y radius
 ry = fabsf(args[1]);       // x radius
 rotx = args[2] / 180.0f * NSVG_PI;   // x rotation angle
 fa = fabsf(args[3]) > 1e-6 ? 1 : 0;  // Large arc
 fs = fabsf(args[4]) > 1e-6 ? 1 : 0;  // Sweep direction
 x1 = *cpx;             // start point
 y1 = *cpy;
 if (rel) {             // end point
   x2 = *cpx + args[5];
   y2 = *cpy + args[6];
 } else {
   x2 = args[5];
   y2 = args[6];
 }

 dx = x1 - x2;
 dy = y1 - y2;
 d = sqrtf(dx*dx + dy*dy);
 if (d < 1e-6f || rx < 1e-6f || ry < 1e-6f) {
   // The arc degenerates to a line
   nsvg__lineTo(p, x2, y2);
   *cpx = x2;
   *cpy = y2;
   return;
 }

 sinrx = sinf(rotx);
 cosrx = cosf(rotx);

 // Convert to center point parameterization.
 // http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
 // 1) Compute x1', y1'
 x1p = cosrx * dx / 2.0f + sinrx * dy / 2.0f;
 y1p = -sinrx * dx / 2.0f + cosrx * dy / 2.0f;
 d = nsvg__sqr(x1p)/nsvg__sqr(rx) + nsvg__sqr(y1p)/nsvg__sqr(ry);
 if (d > 1) {
   d = sqrtf(d);
   rx *= d;
   ry *= d;
 }
 // 2) Compute cx', cy'
 s = 0.0f;
 sa = nsvg__sqr(rx)*nsvg__sqr(ry) - nsvg__sqr(rx)*nsvg__sqr(y1p) - nsvg__sqr(ry)*nsvg__sqr(x1p);
 sb = nsvg__sqr(rx)*nsvg__sqr(y1p) + nsvg__sqr(ry)*nsvg__sqr(x1p);
 if (sa < 0.0f) sa = 0.0f;
 if (sb > 0.0f)
   s = sqrtf(sa / sb);
 if (fa == fs)
   s = -s;
 cxp = s * rx * y1p / ry;
 cyp = s * -ry * x1p / rx;

 // 3) Compute cx,cy from cx',cy'
 cx = (x1 + x2)/2.0f + cosrx*cxp - sinrx*cyp;
 cy = (y1 + y2)/2.0f + sinrx*cxp + cosrx*cyp;

 // 4) Calculate theta1, and delta theta.
 ux = (x1p - cxp) / rx;
 uy = (y1p - cyp) / ry;
 vx = (-x1p - cxp) / rx;
 vy = (-y1p - cyp) / ry;
 a1 = nsvg__vecang(1.0f,0.0f, ux,uy); // Initial angle
 da = nsvg__vecang(ux,uy, vx,vy);   // Delta angle

//  if (vecrat(ux,uy,vx,vy) <= -1.0f) da = NSVG_PI;
//  if (vecrat(ux,uy,vx,vy) >= 1.0f) da = 0;

 if (fs == 0 && da > 0)
   da -= 2 * NSVG_PI;
 else if (fs == 1 && da < 0)
   da += 2 * NSVG_PI;

 // Approximate the arc using cubic spline segments.
 t[0] = cosrx; t[1] = sinrx;
 t[2] = -sinrx; t[3] = cosrx;
 t[4] = cx; t[5] = cy;

 // Split arc into max 90 degree segments.
 // The loop assumes an iteration per end point (including start and end), this +1.
 ndivs = (int)(fabsf(da) / (NSVG_PI*0.5f) + 1.0f);
 hda = (da / (float)ndivs) / 2.0f;
 // Fix for ticket #179: division by 0: avoid cotangens around 0 (infinite)
 if ((hda < 1e-3f) && (hda > -1e-3f))
   hda *= 0.5f;
 else
   hda = (1.0f - cosf(hda)) / sinf(hda);
 kappa = fabsf(4.0f / 3.0f * hda);
 if (da < 0.0f)
   kappa = -kappa;

 for (i = 0; i <= ndivs; i++) {
   a = a1 + da * ((float)i/(float)ndivs);
   dx = cosf(a);
   dy = sinf(a);
   nsvg__xformPoint(&x, &y, dx*rx, dy*ry, t); // position
   nsvg__xformVec(&tanx, &tany, -dy*rx * kappa, dx*ry * kappa, t); // tangent
   if (i > 0)
     nsvg__cubicBezTo(p, px+ptanx,py+ptany, x-tanx, y-tany, x, y);
   px = x;
   py = y;
   ptanx = tanx;
   ptany = tany;
 }

 *cpx = x2;
 *cpy = y2;
}

static void nsvg__parsePath(NSVGparser* p, const char** attr)
{
 const char* s = NULL;
 char cmd = '\0';
 float args[10];
 int nargs;
 int rargs = 0;
 char initPoint;
 float cpx, cpy, cpx2, cpy2;
 const char* tmp[4];
 char closedFlag;
 int i;
 char item[64];

 for (i = 0; attr[i]; i += 2) {
   if (strcmp(attr[i], "d") == 0) {
     s = attr[i + 1];
   } else {
     tmp[0] = attr[i];
     tmp[1] = attr[i + 1];
     tmp[2] = 0;
     tmp[3] = 0;
     nsvg__parseAttribs(p, tmp);
   }
 }

 if (s) {
   nsvg__resetPath(p);
   cpx = 0; cpy = 0;
   cpx2 = 0; cpy2 = 0;
   initPoint = 0;
   closedFlag = 0;
   nargs = 0;

   while (*s) {
     item[0] = '\0';
     if ((cmd == 'A' || cmd == 'a') && (nargs == 3 || nargs == 4))
       s = nsvg__getNextPathItemWhenArcFlag(s, item);
     if (!*item)
       s = nsvg__getNextPathItem(s, item);
     if (!*item) break;
     if (cmd != '\0' && nsvg__isCoordinate(item)) {
       if (nargs < 10)
         args[nargs++] = (float)nsvg__atof(item);
       if (nargs >= rargs) {
         switch (cmd) {
           case 'm':
           case 'M':
             nsvg__pathMoveTo(p, &cpx, &cpy, args, cmd == 'm' ? 1 : 0);
             // Moveto can be followed by multiple coordinate pairs,
             // which should be treated as linetos.
             cmd = (cmd == 'm') ? 'l' : 'L';
             rargs = nsvg__getArgsPerElement(cmd);
             cpx2 = cpx; cpy2 = cpy;
             initPoint = 1;
             break;
           case 'l':
           case 'L':
             nsvg__pathLineTo(p, &cpx, &cpy, args, cmd == 'l' ? 1 : 0);
             cpx2 = cpx; cpy2 = cpy;
             break;
           case 'H':
           case 'h':
             nsvg__pathHLineTo(p, &cpx, &cpy, args, cmd == 'h' ? 1 : 0);
             cpx2 = cpx; cpy2 = cpy;
             break;
           case 'V':
           case 'v':
             nsvg__pathVLineTo(p, &cpx, &cpy, args, cmd == 'v' ? 1 : 0);
             cpx2 = cpx; cpy2 = cpy;
             break;
           case 'C':
           case 'c':
             nsvg__pathCubicBezTo(p, &cpx, &cpy, &cpx2, &cpy2, args, cmd == 'c' ? 1 : 0);
             break;
           case 'S':
           case 's':
             nsvg__pathCubicBezShortTo(p, &cpx, &cpy, &cpx2, &cpy2, args, cmd == 's' ? 1 : 0);
             break;
           case 'Q':
           case 'q':
             nsvg__pathQuadBezTo(p, &cpx, &cpy, &cpx2, &cpy2, args, cmd == 'q' ? 1 : 0);
             break;
           case 'T':
           case 't':
             nsvg__pathQuadBezShortTo(p, &cpx, &cpy, &cpx2, &cpy2, args, cmd == 't' ? 1 : 0);
             break;
           case 'A':
           case 'a':
             nsvg__pathArcTo(p, &cpx, &cpy, args, cmd == 'a' ? 1 : 0);
             cpx2 = cpx; cpy2 = cpy;
             break;
           default:
             if (nargs >= 2) {
               cpx = args[nargs-2];
               cpy = args[nargs-1];
               cpx2 = cpx; cpy2 = cpy;
             }
             break;
         }
         nargs = 0;
       }
     } else {
       cmd = item[0];
       if (cmd == 'M' || cmd == 'm') {
         // Commit path.
         if (p->npts > 0)
           nsvg__addPath(p, closedFlag);
         // Start new subpath.
         nsvg__resetPath(p);
         closedFlag = 0;
         nargs = 0;
       } else if (initPoint == 0) {
         // Do not allow other commands until initial point has been set (moveTo called once).
         cmd = '\0';
       }
       if (cmd == 'Z' || cmd == 'z') {
         closedFlag = 1;
         // Commit path.
         if (p->npts > 0) {
           // Move current point to first point
           cpx = p->pts[0];
           cpy = p->pts[1];
           cpx2 = cpx; cpy2 = cpy;
           nsvg__addPath(p, closedFlag);
         }
         // Start new subpath.
         nsvg__resetPath(p);
         nsvg__moveTo(p, cpx, cpy);
         closedFlag = 0;
         nargs = 0;
       }
       rargs = nsvg__getArgsPerElement(cmd);
       if (rargs == -1) {
         // Command not recognized
         cmd = '\0';
         rargs = 0;
       }
     }
   }
   // Commit path.
   if (p->npts)
     nsvg__addPath(p, closedFlag);
 }

 nsvg__addShape(p);
}

static void nsvg__parseRect(NSVGparser* p, const char** attr)
{
 float x = 0.0f;
 float y = 0.0f;
 float w = 0.0f;
 float h = 0.0f;
 float rx = -1.0f; // marks not set
 float ry = -1.0f;
 int i;

 for (i = 0; attr[i]; i += 2) {
   if (!nsvg__parseAttr(p, attr[i], attr[i + 1])) {
     if (strcmp(attr[i], "x") == 0) x = nsvg__parseCoordinate(p, attr[i+1], nsvg__actualOrigX(p), nsvg__actualWidth(p));
     if (strcmp(attr[i], "y") == 0) y = nsvg__parseCoordinate(p, attr[i+1], nsvg__actualOrigY(p), nsvg__actualHeight(p));
     if (strcmp(attr[i], "width") == 0) w = nsvg__parseCoordinate(p, attr[i+1], 0.0f, nsvg__actualWidth(p));
     if (strcmp(attr[i], "height") == 0) h = nsvg__parseCoordinate(p, attr[i+1], 0.0f, nsvg__actualHeight(p));
     if (strcmp(attr[i], "rx") == 0) rx = fabsf(nsvg__parseCoordinate(p, attr[i+1], 0.0f, nsvg__actualWidth(p)));
     if (strcmp(attr[i], "ry") == 0) ry = fabsf(nsvg__parseCoordinate(p, attr[i+1], 0.0f, nsvg__actualHeight(p)));
   }
 }

 if (rx < 0.0f && ry > 0.0f) rx = ry;
 if (ry < 0.0f && rx > 0.0f) ry = rx;
 if (rx < 0.0f) rx = 0.0f;
 if (ry < 0.0f) ry = 0.0f;
 if (rx > w/2.0f) rx = w/2.0f;
 if (ry > h/2.0f) ry = h/2.0f;

 if (w != 0.0f && h != 0.0f) {
   nsvg__resetPath(p);

   if (rx < 0.00001f || ry < 0.0001f) {
     nsvg__moveTo(p, x, y);
     nsvg__lineTo(p, x+w, y);
     nsvg__lineTo(p, x+w, y+h);
     nsvg__lineTo(p, x, y+h);
   } else {
     // Rounded rectangle
     nsvg__moveTo(p, x+rx, y);
     nsvg__lineTo(p, x+w-rx, y);
     nsvg__cubicBezTo(p, x+w-rx*(1-NSVG_KAPPA90), y, x+w, y+ry*(1-NSVG_KAPPA90), x+w, y+ry);
     nsvg__lineTo(p, x+w, y+h-ry);
     nsvg__cubicBezTo(p, x+w, y+h-ry*(1-NSVG_KAPPA90), x+w-rx*(1-NSVG_KAPPA90), y+h, x+w-rx, y+h);
     nsvg__lineTo(p, x+rx, y+h);
     nsvg__cubicBezTo(p, x+rx*(1-NSVG_KAPPA90), y+h, x, y+h-ry*(1-NSVG_KAPPA90), x, y+h-ry);
     nsvg__lineTo(p, x, y+ry);
     nsvg__cubicBezTo(p, x, y+ry*(1-NSVG_KAPPA90), x+rx*(1-NSVG_KAPPA90), y, x+rx, y);
   }

   nsvg__addPath(p, 1);

   nsvg__addShape(p);
 }
}

static void nsvg__parseCircle(NSVGparser* p, const char** attr)
{
 float cx = 0.0f;
 float cy = 0.0f;
 float r = 0.0f;
 int i;

 for (i = 0; attr[i]; i += 2) {
   if (!nsvg__parseAttr(p, attr[i], attr[i + 1])) {
     if (strcmp(attr[i], "cx") == 0) cx = nsvg__parseCoordinate(p, attr[i+1], nsvg__actualOrigX(p), nsvg__actualWidth(p));
     if (strcmp(attr[i], "cy") == 0) cy = nsvg__parseCoordinate(p, attr[i+1], nsvg__actualOrigY(p), nsvg__actualHeight(p));
     if (strcmp(attr[i], "r") == 0) r = fabsf(nsvg__parseCoordinate(p, attr[i+1], 0.0f, nsvg__actualLength(p)));
   }
 }

 if (r > 0.0f) {
   nsvg__resetPath(p);

   nsvg__moveTo(p, cx+r, cy);
   nsvg__cubicBezTo(p, cx+r, cy+r*NSVG_KAPPA90, cx+r*NSVG_KAPPA90, cy+r, cx, cy+r);
   nsvg__cubicBezTo(p, cx-r*NSVG_KAPPA90, cy+r, cx-r, cy+r*NSVG_KAPPA90, cx-r, cy);
   nsvg__cubicBezTo(p, cx-r, cy-r*NSVG_KAPPA90, cx-r*NSVG_KAPPA90, cy-r, cx, cy-r);
   nsvg__cubicBezTo(p, cx+r*NSVG_KAPPA90, cy-r, cx+r, cy-r*NSVG_KAPPA90, cx+r, cy);

   nsvg__addPath(p, 1);

   nsvg__addShape(p);
 }
}

static void nsvg__parseEllipse(NSVGparser* p, const char** attr)
{
 float cx = 0.0f;
 float cy = 0.0f;
 float rx = 0.0f;
 float ry = 0.0f;
 int i;

 for (i = 0; attr[i]; i += 2) {
   if (!nsvg__parseAttr(p, attr[i], attr[i + 1])) {
     if (strcmp(attr[i], "cx") == 0) cx = nsvg__parseCoordinate(p, attr[i+1], nsvg__actualOrigX(p), nsvg__actualWidth(p));
     if (strcmp(attr[i], "cy") == 0) cy = nsvg__parseCoordinate(p, attr[i+1], nsvg__actualOrigY(p), nsvg__actualHeight(p));
     if (strcmp(attr[i], "rx") == 0) rx = fabsf(nsvg__parseCoordinate(p, attr[i+1], 0.0f, nsvg__actualWidth(p)));
     if (strcmp(attr[i], "ry") == 0) ry = fabsf(nsvg__parseCoordinate(p, attr[i+1], 0.0f, nsvg__actualHeight(p)));
   }
 }

 if (rx > 0.0f && ry > 0.0f) {

   nsvg__resetPath(p);

   nsvg__moveTo(p, cx+rx, cy);
   nsvg__cubicBezTo(p, cx+rx, cy+ry*NSVG_KAPPA90, cx+rx*NSVG_KAPPA90, cy+ry, cx, cy+ry);
   nsvg__cubicBezTo(p, cx-rx*NSVG_KAPPA90, cy+ry, cx-rx, cy+ry*NSVG_KAPPA90, cx-rx, cy);
   nsvg__cubicBezTo(p, cx-rx, cy-ry*NSVG_KAPPA90, cx-rx*NSVG_KAPPA90, cy-ry, cx, cy-ry);
   nsvg__cubicBezTo(p, cx+rx*NSVG_KAPPA90, cy-ry, cx+rx, cy-ry*NSVG_KAPPA90, cx+rx, cy);

   nsvg__addPath(p, 1);

   nsvg__addShape(p);
 }
}

static void nsvg__parseLine(NSVGparser* p, const char** attr)
{
 float x1 = 0.0;
 float y1 = 0.0;
 float x2 = 0.0;
 float y2 = 0.0;
 int i;

 for (i = 0; attr[i]; i += 2) {
   if (!nsvg__parseAttr(p, attr[i], attr[i + 1])) {
     if (strcmp(attr[i], "x1") == 0) x1 = nsvg__parseCoordinate(p, attr[i + 1], nsvg__actualOrigX(p), nsvg__actualWidth(p));
     if (strcmp(attr[i], "y1") == 0) y1 = nsvg__parseCoordinate(p, attr[i + 1], nsvg__actualOrigY(p), nsvg__actualHeight(p));
     if (strcmp(attr[i], "x2") == 0) x2 = nsvg__parseCoordinate(p, attr[i + 1], nsvg__actualOrigX(p), nsvg__actualWidth(p));
     if (strcmp(attr[i], "y2") == 0) y2 = nsvg__parseCoordinate(p, attr[i + 1], nsvg__actualOrigY(p), nsvg__actualHeight(p));
   }
 }

 nsvg__resetPath(p);

 nsvg__moveTo(p, x1, y1);
 nsvg__lineTo(p, x2, y2);

 nsvg__addPath(p, 0);

 nsvg__addShape(p);
}

static void nsvg__parsePoly(NSVGparser* p, const char** attr, int closeFlag)
{
 int i;
 const char* s;
 float args[2];
 int nargs, npts = 0;
 char item[64];

 nsvg__resetPath(p);

 for (i = 0; attr[i]; i += 2) {
   if (!nsvg__parseAttr(p, attr[i], attr[i + 1])) {
     if (strcmp(attr[i], "points") == 0) {
       s = attr[i + 1];
       nargs = 0;
       while (*s) {
         s = nsvg__getNextPathItem(s, item);
         args[nargs++] = (float)nsvg__atof(item);
         if (nargs >= 2) {
           if (npts == 0)
             nsvg__moveTo(p, args[0], args[1]);
           else
             nsvg__lineTo(p, args[0], args[1]);
           nargs = 0;
           npts++;
         }
       }
     }
   }
 }

 nsvg__addPath(p, (char)closeFlag);

 nsvg__addShape(p);
}

static void nsvg__parseSVG(NSVGparser* p, const char** attr)
{
 int i;
 for (i = 0; attr[i]; i += 2) {
   if (!nsvg__parseAttr(p, attr[i], attr[i + 1])) {
     if (strcmp(attr[i], "width") == 0) {
       p->image->width = nsvg__parseCoordinate(p, attr[i + 1], 0.0f, 0.0f);
     } else if (strcmp(attr[i], "height") == 0) {
       p->image->height = nsvg__parseCoordinate(p, attr[i + 1], 0.0f, 0.0f);
     } else if (strcmp(attr[i], "viewBox") == 0) {
       const char *s = attr[i + 1];
       char buf[64];
       s = nsvg__parseNumber(s, buf, 64);
       p->viewMinx = nsvg__atof(buf);
       while (*s && (nsvg__isspace(*s) || *s == '%' || *s == ',')) s++;
       if (!*s) return;
       s = nsvg__parseNumber(s, buf, 64);
       p->viewMiny = nsvg__atof(buf);
       while (*s && (nsvg__isspace(*s) || *s == '%' || *s == ',')) s++;
       if (!*s) return;
       s = nsvg__parseNumber(s, buf, 64);
       p->viewWidth = nsvg__atof(buf);
       while (*s && (nsvg__isspace(*s) || *s == '%' || *s == ',')) s++;
       if (!*s) return;
       s = nsvg__parseNumber(s, buf, 64);
       p->viewHeight = nsvg__atof(buf);
     } else if (strcmp(attr[i], "preserveAspectRatio") == 0) {
       if (strstr(attr[i + 1], "none") != 0) {
         // No uniform scaling
         p->alignType = NSVG_ALIGN_NONE;
       } else {
         // Parse X align
         if (strstr(attr[i + 1], "xMin") != 0)
           p->alignX = NSVG_ALIGN_MIN;
         else if (strstr(attr[i + 1], "xMid") != 0)
           p->alignX = NSVG_ALIGN_MID;
         else if (strstr(attr[i + 1], "xMax") != 0)
           p->alignX = NSVG_ALIGN_MAX;
         // Parse X align
         if (strstr(attr[i + 1], "yMin") != 0)
           p->alignY = NSVG_ALIGN_MIN;
         else if (strstr(attr[i + 1], "yMid") != 0)
           p->alignY = NSVG_ALIGN_MID;
         else if (strstr(attr[i + 1], "yMax") != 0)
           p->alignY = NSVG_ALIGN_MAX;
         // Parse meet/slice
         p->alignType = NSVG_ALIGN_MEET;
         if (strstr(attr[i + 1], "slice") != 0)
           p->alignType = NSVG_ALIGN_SLICE;
       }
     }
   }
 }
}

static void nsvg__parseGradient(NSVGparser* p, const char** attr, signed char type)
{
 int i;
 NSVGgradientData* grad = (NSVGgradientData*)malloc(sizeof(NSVGgradientData));
 if (grad == NULL) return;
 memset(grad, 0, sizeof(NSVGgradientData));
 grad->units = NSVG_OBJECT_SPACE;
 grad->type = type;
 if (grad->type == NSVG_PAINT_LINEAR_GRADIENT) {
   grad->linear.x1 = nsvg__coord(0.0f, NSVG_UNITS_PERCENT);
   grad->linear.y1 = nsvg__coord(0.0f, NSVG_UNITS_PERCENT);
   grad->linear.x2 = nsvg__coord(100.0f, NSVG_UNITS_PERCENT);
   grad->linear.y2 = nsvg__coord(0.0f, NSVG_UNITS_PERCENT);
 } else if (grad->type == NSVG_PAINT_RADIAL_GRADIENT) {
   grad->radial.cx = nsvg__coord(50.0f, NSVG_UNITS_PERCENT);
   grad->radial.cy = nsvg__coord(50.0f, NSVG_UNITS_PERCENT);
   grad->radial.r = nsvg__coord(50.0f, NSVG_UNITS_PERCENT);
 }

 nsvg__xformIdentity(grad->xform);

 for (i = 0; attr[i]; i += 2) {
   if (strcmp(attr[i], "id") == 0) {
     strncpy(grad->id, attr[i+1], 63);
     grad->id[63] = '\0';
   } else if (!nsvg__parseAttr(p, attr[i], attr[i + 1])) {
     if (strcmp(attr[i], "gradientUnits") == 0) {
       if (strcmp(attr[i+1], "objectBoundingBox") == 0)
         grad->units = NSVG_OBJECT_SPACE;
       else
         grad->units = NSVG_USER_SPACE;
     } else if (strcmp(attr[i], "gradientTransform") == 0) {
       nsvg__parseTransform(grad->xform, attr[i + 1]);
     } else if (strcmp(attr[i], "cx") == 0) {
       grad->radial.cx = nsvg__parseCoordinateRaw(attr[i + 1]);
     } else if (strcmp(attr[i], "cy") == 0) {
       grad->radial.cy = nsvg__parseCoordinateRaw(attr[i + 1]);
     } else if (strcmp(attr[i], "r") == 0) {
       grad->radial.r = nsvg__parseCoordinateRaw(attr[i + 1]);
     } else if (strcmp(attr[i], "fx") == 0) {
       grad->radial.fx = nsvg__parseCoordinateRaw(attr[i + 1]);
     } else if (strcmp(attr[i], "fy") == 0) {
       grad->radial.fy = nsvg__parseCoordinateRaw(attr[i + 1]);
     } else if (strcmp(attr[i], "x1") == 0) {
       grad->linear.x1 = nsvg__parseCoordinateRaw(attr[i + 1]);
     } else if (strcmp(attr[i], "y1") == 0) {
       grad->linear.y1 = nsvg__parseCoordinateRaw(attr[i + 1]);
     } else if (strcmp(attr[i], "x2") == 0) {
       grad->linear.x2 = nsvg__parseCoordinateRaw(attr[i + 1]);
     } else if (strcmp(attr[i], "y2") == 0) {
       grad->linear.y2 = nsvg__parseCoordinateRaw(attr[i + 1]);
     } else if (strcmp(attr[i], "spreadMethod") == 0) {
       if (strcmp(attr[i+1], "pad") == 0)
         grad->spread = NSVG_SPREAD_PAD;
       else if (strcmp(attr[i+1], "reflect") == 0)
         grad->spread = NSVG_SPREAD_REFLECT;
       else if (strcmp(attr[i+1], "repeat") == 0)
         grad->spread = NSVG_SPREAD_REPEAT;
     } else if (strcmp(attr[i], "xlink:href") == 0) {
       const char *href = attr[i+1];
       strncpy(grad->ref, href+1, 62);
       grad->ref[62] = '\0';
     }
   }
 }

 grad->next = p->gradients;
 p->gradients = grad;
}

static void nsvg__parseGradientStop(NSVGparser* p, const char** attr)
{
 NSVGattrib* curAttr = nsvg__getAttr(p);
 NSVGgradientData* grad;
 NSVGgradientStop* stop;
 int i, idx;

 curAttr->stopOffset = 0;
 curAttr->stopColor = 0;
 curAttr->stopOpacity = 1.0f;

 for (i = 0; attr[i]; i += 2) {
   nsvg__parseAttr(p, attr[i], attr[i + 1]);
 }

 // Add stop to the last gradient.
 grad = p->gradients;
 if (grad == NULL) return;

 grad->nstops++;
 grad->stops = (NSVGgradientStop*)realloc(grad->stops, sizeof(NSVGgradientStop)*grad->nstops);
 if (grad->stops == NULL) return;

 // Insert
 idx = grad->nstops-1;
 for (i = 0; i < grad->nstops-1; i++) {
   if (curAttr->stopOffset < grad->stops[i].offset) {
     idx = i;
     break;
   }
 }
 if (idx != grad->nstops-1) {
   for (i = grad->nstops-1; i > idx; i--)
     grad->stops[i] = grad->stops[i-1];
 }

 stop = &grad->stops[idx];
 stop->color = curAttr->stopColor;
 stop->color |= (unsigned int)(curAttr->stopOpacity*255) << 24;
 stop->offset = curAttr->stopOffset;
}

static void nsvg__startElement(void* ud, const char* el, const char** attr)
{
 NSVGparser* p = (NSVGparser*)ud;

 if (p->defsFlag) {
   // Skip everything but gradients in defs
   if (strcmp(el, "linearGradient") == 0) {
     nsvg__parseGradient(p, attr, NSVG_PAINT_LINEAR_GRADIENT);
   } else if (strcmp(el, "radialGradient") == 0) {
     nsvg__parseGradient(p, attr, NSVG_PAINT_RADIAL_GRADIENT);
   } else if (strcmp(el, "stop") == 0) {
     nsvg__parseGradientStop(p, attr);
   }
   return;
 }

 if (strcmp(el, "g") == 0) {
   nsvg__pushAttr(p);
   nsvg__parseAttribs(p, attr);
 } else if (strcmp(el, "path") == 0) {
   if (p->pathFlag) // Do not allow nested paths.
     return;
   nsvg__pushAttr(p);
   nsvg__parsePath(p, attr);
   nsvg__popAttr(p);
 } else if (strcmp(el, "rect") == 0) {
   nsvg__pushAttr(p);
   nsvg__parseRect(p, attr);
   nsvg__popAttr(p);
 } else if (strcmp(el, "circle") == 0) {
   nsvg__pushAttr(p);
   nsvg__parseCircle(p, attr);
   nsvg__popAttr(p);
 } else if (strcmp(el, "ellipse") == 0) {
   nsvg__pushAttr(p);
   nsvg__parseEllipse(p, attr);
   nsvg__popAttr(p);
 } else if (strcmp(el, "line") == 0)  {
   nsvg__pushAttr(p);
   nsvg__parseLine(p, attr);
   nsvg__popAttr(p);
 } else if (strcmp(el, "polyline") == 0)  {
   nsvg__pushAttr(p);
   nsvg__parsePoly(p, attr, 0);
   nsvg__popAttr(p);
 } else if (strcmp(el, "polygon") == 0)  {
   nsvg__pushAttr(p);
   nsvg__parsePoly(p, attr, 1);
   nsvg__popAttr(p);
 } else  if (strcmp(el, "linearGradient") == 0) {
   nsvg__parseGradient(p, attr, NSVG_PAINT_LINEAR_GRADIENT);
 } else if (strcmp(el, "radialGradient") == 0) {
   nsvg__parseGradient(p, attr, NSVG_PAINT_RADIAL_GRADIENT);
 } else if (strcmp(el, "stop") == 0) {
   nsvg__parseGradientStop(p, attr);
 } else if (strcmp(el, "defs") == 0) {
   p->defsFlag = 1;
 } else if (strcmp(el, "svg") == 0) {
   nsvg__parseSVG(p, attr);
 }
}

static void nsvg__endElement(void* ud, const char* el)
{
 NSVGparser* p = (NSVGparser*)ud;

 if (strcmp(el, "g") == 0) {
   nsvg__popAttr(p);
 } else if (strcmp(el, "path") == 0) {
   p->pathFlag = 0;
 } else if (strcmp(el, "defs") == 0) {
   p->defsFlag = 0;
 }
}

static void nsvg__content(void* ud, const char* s)
{
 NSVG_NOTUSED(ud);
 NSVG_NOTUSED(s);
 // empty
}

static void nsvg__imageBounds(NSVGparser* p, float* bounds)
{
 NSVGshape* shape;
 shape = p->image->shapes;
 if (shape == NULL) {
   bounds[0] = bounds[1] = bounds[2] = bounds[3] = 0.0;
   return;
 }
 bounds[0] = shape->bounds[0];
 bounds[1] = shape->bounds[1];
 bounds[2] = shape->bounds[2];
 bounds[3] = shape->bounds[3];
 for (shape = shape->next; shape != NULL; shape = shape->next) {
   bounds[0] = nsvg__minf(bounds[0], shape->bounds[0]);
   bounds[1] = nsvg__minf(bounds[1], shape->bounds[1]);
   bounds[2] = nsvg__maxf(bounds[2], shape->bounds[2]);
   bounds[3] = nsvg__maxf(bounds[3], shape->bounds[3]);
 }
}

static float nsvg__viewAlign(float content, float container, int type)
{
 if (type == NSVG_ALIGN_MIN)
   return 0;
 else if (type == NSVG_ALIGN_MAX)
   return container - content;
 // mid
 return (container - content) * 0.5f;
}

static void nsvg__scaleGradient(NSVGgradient* grad, float tx, float ty, float sx, float sy)
{
 float t[6];
 nsvg__xformSetTranslation(t, tx, ty);
 nsvg__xformMultiply (grad->xform, t);

 nsvg__xformSetScale(t, sx, sy);
 nsvg__xformMultiply (grad->xform, t);
}

static void nsvg__scaleToViewbox(NSVGparser* p, const char* units)
{
 NSVGshape* shape;
 NSVGpath* path;
 float tx, ty, sx, sy, us, bounds[4], t[6], avgs;
 int i;
 float* pt;

 // Guess image size if not set completely.
 nsvg__imageBounds(p, bounds);

 if (p->viewWidth == 0) {
   if (p->image->width > 0) {
     p->viewWidth = p->image->width;
   } else {
     p->viewMinx = bounds[0];
     p->viewWidth = bounds[2] - bounds[0];
   }
 }
 if (p->viewHeight == 0) {
   if (p->image->height > 0) {
     p->viewHeight = p->image->height;
   } else {
     p->viewMiny = bounds[1];
     p->viewHeight = bounds[3] - bounds[1];
   }
 }
 if (p->image->width == 0)
   p->image->width = p->viewWidth;
 if (p->image->height == 0)
   p->image->height = p->viewHeight;

 tx = -p->viewMinx;
 ty = -p->viewMiny;
 sx = p->viewWidth > 0 ? p->image->width / p->viewWidth : 0;
 sy = p->viewHeight > 0 ? p->image->height / p->viewHeight : 0;
 // Unit scaling
 us = 1.0f / nsvg__convertToPixels(p, nsvg__coord(1.0f, nsvg__parseUnits(units)), 0.0f, 1.0f);

 // Fix aspect ratio
 if (p->alignType == NSVG_ALIGN_MEET) {
   // fit whole image into viewbox
   sx = sy = nsvg__minf(sx, sy);
   tx += nsvg__viewAlign(p->viewWidth*sx, p->image->width, p->alignX) / sx;
   ty += nsvg__viewAlign(p->viewHeight*sy, p->image->height, p->alignY) / sy;
 } else if (p->alignType == NSVG_ALIGN_SLICE) {
   // fill whole viewbox with image
   sx = sy = nsvg__maxf(sx, sy);
   tx += nsvg__viewAlign(p->viewWidth*sx, p->image->width, p->alignX) / sx;
   ty += nsvg__viewAlign(p->viewHeight*sy, p->image->height, p->alignY) / sy;
 }

 // Transform
 sx *= us;
 sy *= us;
 avgs = (sx+sy) / 2.0f;
 for (shape = p->image->shapes; shape != NULL; shape = shape->next) {
   shape->bounds[0] = (shape->bounds[0] + tx) * sx;
   shape->bounds[1] = (shape->bounds[1] + ty) * sy;
   shape->bounds[2] = (shape->bounds[2] + tx) * sx;
   shape->bounds[3] = (shape->bounds[3] + ty) * sy;
   for (path = shape->paths; path != NULL; path = path->next) {
     path->bounds[0] = (path->bounds[0] + tx) * sx;
     path->bounds[1] = (path->bounds[1] + ty) * sy;
     path->bounds[2] = (path->bounds[2] + tx) * sx;
     path->bounds[3] = (path->bounds[3] + ty) * sy;
     for (i =0; i < path->npts; i++) {
       pt = &path->pts[i*2];
       pt[0] = (pt[0] + tx) * sx;
       pt[1] = (pt[1] + ty) * sy;
     }
   }

   if (shape->fill.type == NSVG_PAINT_LINEAR_GRADIENT || shape->fill.type == NSVG_PAINT_RADIAL_GRADIENT) {
     nsvg__scaleGradient(shape->fill.gradient, tx,ty, sx,sy);
     memcpy(t, shape->fill.gradient->xform, sizeof(float)*6);
     nsvg__xformInverse(shape->fill.gradient->xform, t);
   }
   if (shape->stroke.type == NSVG_PAINT_LINEAR_GRADIENT || shape->stroke.type == NSVG_PAINT_RADIAL_GRADIENT) {
     nsvg__scaleGradient(shape->stroke.gradient, tx,ty, sx,sy);
     memcpy(t, shape->stroke.gradient->xform, sizeof(float)*6);
     nsvg__xformInverse(shape->stroke.gradient->xform, t);
   }

   shape->strokeWidth *= avgs;
   shape->strokeDashOffset *= avgs;
   for (i = 0; i < shape->strokeDashCount; i++)
     shape->strokeDashArray[i] *= avgs;
 }
}

static void nsvg__createGradients(NSVGparser* p)
{
 NSVGshape* shape;

 for (shape = p->image->shapes; shape != NULL; shape = shape->next) {
   if (shape->fill.type == NSVG_PAINT_UNDEF) {
     if (shape->fillGradient[0] != '\0') {
       float inv[6], localBounds[4];
       nsvg__xformInverse(inv, shape->xform);
       nsvg__getLocalBounds(localBounds, shape, inv);
       shape->fill.gradient = nsvg__createGradient(p, shape->fillGradient, localBounds, shape->xform, &shape->fill.type);
     }
     if (shape->fill.type == NSVG_PAINT_UNDEF) {
       shape->fill.type = NSVG_PAINT_NONE;
     }
   }
   if (shape->stroke.type == NSVG_PAINT_UNDEF) {
     if (shape->strokeGradient[0] != '\0') {
       float inv[6], localBounds[4];
       nsvg__xformInverse(inv, shape->xform);
       nsvg__getLocalBounds(localBounds, shape, inv);
       shape->stroke.gradient = nsvg__createGradient(p, shape->strokeGradient, localBounds, shape->xform, &shape->stroke.type);
     }
     if (shape->stroke.type == NSVG_PAINT_UNDEF) {
       shape->stroke.type = NSVG_PAINT_NONE;
     }
   }
 }
}

NSVGimage* nsvgParse(char* input, const char* units, float dpi)
{
 NSVGparser* p;
 NSVGimage* ret = 0;

 p = nsvg__createParser();
 if (p == NULL) {
   return NULL;
 }
 p->dpi = dpi;

 nsvg__parseXML(input, nsvg__startElement, nsvg__endElement, nsvg__content, p);

 // Create gradients after all definitions have been parsed
 nsvg__createGradients(p);

 // Scale to viewBox
 nsvg__scaleToViewbox(p, units);

 ret = p->image;
 p->image = NULL;

 nsvg__deleteParser(p);

 return ret;
}

NSVGimage* nsvgParseFromFile(const char* filename, const char* units, float dpi)
{
 FILE* fp = NULL;
 size_t size;
 char* data = NULL;
 NSVGimage* image = NULL;

 fp = fopen(filename, "rb");
 if (!fp) goto error;
 fseek(fp, 0, SEEK_END);
 size = ftell(fp);
 fseek(fp, 0, SEEK_SET);
 data = (char*)malloc(size+1);
 if (data == NULL) goto error;
 if (fread(data, 1, size, fp) != size) goto error;
 data[size] = '\0'; // Must be null terminated.
 fclose(fp);
 image = nsvgParse(data, units, dpi);
 free(data);

 return image;

error:
 if (fp) fclose(fp);
 if (data) free(data);
 if (image) nsvgDelete(image);
 return NULL;
}

NSVGpath* nsvgDuplicatePath(NSVGpath* p)
{
   NSVGpath* res = NULL;

   if (p == NULL)
       return NULL;

   res = (NSVGpath*)malloc(sizeof(NSVGpath));
   if (res == NULL) goto error;
   memset(res, 0, sizeof(NSVGpath));

   res->pts = (float*)malloc(p->npts*2*sizeof(float));
   if (res->pts == NULL) goto error;
   memcpy(res->pts, p->pts, p->npts * sizeof(float) * 2);
   res->npts = p->npts;

   memcpy(res->bounds, p->bounds, sizeof(p->bounds));

   res->closed = p->closed;

   return res;

error:
   if (res != NULL) {
       free(res->pts);
       free(res);
   }
   return NULL;
}

void nsvgDelete(NSVGimage* image)
{
 NSVGshape *snext, *shape;
 if (image == NULL) return;
 shape = image->shapes;
 while (shape != NULL) {
   snext = shape->next;
   nsvg__deletePaths(shape->paths);
   nsvg__deletePaint(&shape->fill);
   nsvg__deletePaint(&shape->stroke);
   free(shape);
   shape = snext;
 }
 free(image);
}

#endif // NANOSVG_H
using namespace std;


int main () {
  // Load
struct NSVGimage* image;
image = nsvgParseFromFile("test.svg", "px", 96);
printf("size: %f x %f\n", image->width, image->height);
// Use...
int m = 0, k = 0;
for (NSVGshape* shape = image->shapes; shape != NULL; shape = shape->next) {
  for (NSVGpath* path = shape->paths; path != NULL; path = path->next) {
    cout << "path " << ++m << " npts = " << path->npts << endl;
    for (int i = 0; i < path->npts-1; i += 3) {
      float* p = &path->pts[i*2];
      k = 0;
      for (int j = 0; j < 7; j += 2) {
        cout << ++k << " = " << p[j] << ' ' << p[j+1] << endl;
      }
    }
  }
}
// Delete
nsvgDelete(image);
}


/*int main () {
  ifstream f ("out", ios::in);
  string s;
  int i = 0;
  while (getline (f, s)) {
    for (int i = 0; i < s.length(); ++i) {
      if (s[i]==' ') s[i]='.';
      cout << s[i];
    }
    cout << endl;
    //cout << "line: " << ++i << ' ' << s << endl;
  }
  cout << "eof" << endl;
}*/


/*struct a {
  virtual void f() { cout << "a:f" << endl;}
};

struct b : a {
  void f() {cout << "b:f" << endl;}
};

struct c : b {
  void f() {cout << "c:f" << endl;}
};

int main () {
  a* pa;
  b* pb;
  b bb;
  c cc;

  pa = pb = &cc;
  pa->f();
  pb->f();


  return 0;
}*/




/*#define LISTENER(name, t1, t2) struct name_pt { int t1, t2; };
using namespace std;

LISTENER(jag, x, y)

int main () {
  name_pt pt;
  pt.x = 5;
  pt.y = 5;
  //jag_pt pt;
  //pt.x = 5;
  //pt.y = 5;*
  return 0;
}*/




/*struct X {
  virtual void up () {cout << "X.up" << endl;}
};

struct Y : X {
  void up () {cout << "Y.up" << endl;}
};

int main () {
  X x;
  Y y;
  x.up ();
  y.up ();
}*/


/*int main () {
  float* arr1 = new float [100];
  float* arr2 = new float [200];
  arr1[0] = 100;
  arr2[0] = 200;
  float* arr[2] = {arr1, arr2};
  for (int i = 0; i < 2; ++i) {
    float* v = arr[i];
    cout << v[0] << endl;
  }
  delete arr1;
  delete arr2;
}*/


/*
if {0} {
proc et {} {
  set rep {e t -}
  set i [expr int(0.5 + [- [llength $rep] 1] * rand())]
  return [lindex $rep $i]
}

proc beatend {} {
  global pattern;
  set len [string length $pattern]
  if {$len ne 0} {
    if {0} {
      set first [string index $pattern 0]
      set pattern [string range $pattern 1 end]
      set pattern [string cat $pattern $first]
    }

    set rep {e t}
    set pattern [string map "e [et] t [et]" $pattern]
    echo "pattern = $pattern, beats = $len"
    morse-code $pattern $len 1
    paste-gater
  }
}
}
*/